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We can do everything. T What IS can do toady is highly limited.
What we cannot do is Useless. R Useless confused with Cannot Be Done.

So... why to worry about Uncertainty? U No future without using Uncertainty.
T

The Information Systems Radical. H The Uncertainty Zealot.

Summary: This report surveys various forms of imperfect data, be it imprecision or
uncertainty. To that end, a structured thesaurus is proposed. The models that have
been proposed to represent imprecision and uncertainty are briefly presented, and
their meanings are discussed.

1. Imperfection in Data.

Imperfection, be it imprecision or uncertainty, pervades real world scenarios and must
be incorporated into every information system that attempts to provide a complete
and accurate model of the real world. But yet, this is hardly achieved by today’s
information system products. A major reason might be found in the difficulty to
understand the various aspects of imprecision and uncertainty.

Is there imprecision and uncertainty in the real world? This is an open question.
Whatever the answer, it must be recognized that our picture of the world, that
corresponds to the only information we can cope with, never reaches perfection. Data
as available for an information system are always somehow imperfect.

Until recently, almost all aspects of imperfect data were modeled by probability
theory but in the last 20 years, many new models have been developed to represent
imperfect data. The large number of models reflects the recent acknowledgment that
there exist many aspects of imperfection and that probability theory, as good as it is,
is not the unique normative model that can cope with all of them.
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Why should we worry about all these new models when it comes to incorporating
them in an information system? The use of inappropriate, unjustified, or purely ad hoc
models can lead to outputs that might be misunderstood by the end user. It was the
case with the Certainty Factor, where the real meaning of the numbers was not
defined, and therefore it lead to the abandon of the model.

Newcomers in the domain are overwhelmed by the multitude of models. Their
reaction may be to accept one of them as THE model and use it in every context.
Another reaction is to accept all of them and to apply them more or less at random.
Both attitudes are wrong and could be seriously misleading.

This paper will present some aspects of imperfection. A full inventory is not
practically possible. We propose a classification where imprecision, inconsistency
and uncertainty are the major groups. We then present the various approaches that
have been proposed to model imprecision and uncertainty. These models are grouped
into two large categories : the symbolic and the quantitative models. Details about
these models and their use for specific information system application are presented
in the subsequent papers in this book. This general introduction focuses only on the
ideas underlying the various models, not on their technical details. A detailed analysis
of imperfect data is presented in Smithson (1989). Clark (1990) presents a survey of
the probability oriented linguistic terms. Some elements of this report were previously
published in a shorter version in Smets (1991a). A recent review on the representation
of uncertainty in artificial intelligence can be found in Krause and Clark (1993).

2. Variety of imperfect information.

Table 1 presents a structured thesaurus of the aspects of imperfection one can find in
a piece of information. Table 2 presents the definition of each aspect as can be found
in a classical dictionary.

We use imperfection as the most general label. Information is perfect when it is
precise and certain. Imperfection can be due to imprecision, inconsistency and
uncertainty, the major aspects of imperfect data.

Imprecision and inconsistency are properties related to the content of the statement:
either more than one world or no world is compatible with the available information,
respectively. Uncertainty is a property that results from a lack of information about
the world for deciding if the statement is true or false. Imprecision and inconsistency
are essentially properties of the information itself whereas uncertainty is a property of
the relation between the information and our knowledge about the world.
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To illustrate the difference between imprecision and uncertainty, consider the
following two situations :

1. John has at least two children and I am sure about it.
2. John has three children but I am not sure about it.

In case 1, the number of children is imprecise but certain. In case 2, the number of
children is precise but uncertain. Both aspects can coexist but are distinct. Often the
more imprecise you are, the most certain you are, and the more precise, the less
certain. There seems to be some Information Maximality Principle that requires that
the ‘product’ of precision and certainty cannot be beyond a certain critical level. Any
increase in one is balanced by a decrease in the other.

We consider successively and separately the various aspects of imprecision,
inconsistency and uncertainty.

2.1. Imprecision.

Imprecision can be characterized by the presence of absence of an error component.

2.1.1. Imprecision without error.

The information ‘the food is hot’ is ambiguous (synonymous to amphibologic)
as the food might be spicy or warm.

‘Age = in the 30’s’ is approximate if the age is 36. ‘Age = close to 30’ is a fuzzy
information. In the first case, it is always decidable if the information is correct or
not. ‘Age = In the 30’s’ is correct for someone who is 36, whereas it is incorrect for
someone who is 28. Decidability is lost with fuzzy information. ‘Age = close to 30’ is
more or less correct for both individuals but more correct for the 28 year-old
individual than for the 36 year-old one. Correctness admits some kind of degrees once
fuzziness is involved.

Data can be strictly missing but also incomplete as if ‘spouse name = Joan or Jill’
for John. According to the context, incompleteness can be associated with
deficiency or not. If you want to list only bachelors, the information available for
the spouse’s name field, even though incomplete, is not deficient as far as you know
that John is not a bachelor. If you want to address John’s wife by her name, the
information is not only incomplete but also deficient as you do not know if her name
is Joan or Jill.

2.1.2. Imprecision combined with error.
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So far, the information is not erroneous. The true value is compatible with the
available information. When errors can also be present, many aspects of imprecision
can be described. Data will be erroneous or incorrect when it is just wrong as in
‘age = 37’ when the age is 25. Inaccurate data are somehow wrong but the error is
small,, for example, ‘Age = 37’ when the actual age is 36, is of course erroneous but
not too much, so it might be qualified as inaccurate.

Invalid data are not only erroneous data but data that might potentially be linked to
unacceptable conclusions. ‘John’s marital status = widower’ when John is a bachelor
is erroneous, but also invalid as a pension alimony will be paid abusively.

Distortion in data is analogous to inaccuracy combined with invalidity. Data is
biased if all data were subjected to a systematic error. It would be the case if all ages
were given as the true age - 2 years. It would be obtained if the age were computed as
a difference between the birth date and today’s date, and today’s date is wrong by two
years.

Nonsensical and meaningless data are extreme aspects of erroneous data.
However, the value is so extreme that the user can discover the error instantaneously:
‘age = 245 years’, ‘marital status = apple’.... Meaningless is a less pernicious type of
error as it has the flavor of irrelevancy.

2.2. Inconsistency.

When several statements are combined, new aspects of imperfection can appear, in
which cases some kind of error is always involved. An information can be
conflicting : ‘marital status = bachelor’, ‘spouse name = Joan’. The conflict in the
data leads to an incoherence in the conclusions. Indeed the conclusion drawn from
the data is that John is a ‘married bachelor’ as he has a spouse.

Inconsistency is better used in a context when time is involved: at 3 p.m. the eggs
were boiled and at 3.15 p.m. the same eggs were fresh.

Logicians used inconsistency to define the incoherence that results from a
conflicting information, like when you learn that at 3 p.m. the eggs were boiled and at
3.15 p.m. the same eggs were fresh.

Conclusions will be confused when incoherent and when the involved incoherence
can be recovered by some small modifications of the data : you announce you arrive
in Brussels by train at 3.05 p.m. but the train is scheduled to arrive at 3.15 p.m. The
incoherence is much smaller than would be the case if there was no train arriving in
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the afternoon. In the first case, I accept that you will arrive just after 3 p.m. whereas
in the second case I hardly know what to accept.

2.3. Uncertainty.

The third aspect of informational imperfection, uncertainty, concerns the state of
knowledge of an agent (denoted You, but the agent could even be a computer) about
the relation between the world and the statement about the world. The statement is
either true or false, but Your knowledge about the world does not allow You to decide
if the statement is true or false. Certainty is full knowledge of the true value of the
data. Uncertainty is partial knowledge of the true value of the data. Uncertainty
results in ignorance (etymologically not knowing). It is essentially, if not always,
an epistemic property induced by a lack of information. A major cause of uncertainty
is imprecision in the data. Whether uncertainty is an objective or a subjective property
is a still debated philosophical question left aside here.

2.3.1. Objective Uncertainty.

Some specialists have argued that uncertainty related to randomness is an objective
property and the term l ikely qualifies an event that will probably occur. They defend
that the fact that ‘an event is likely’ is independent of Your opinion about the
occurrence of the event, and that likelihood (as well as randomness) is an objective
property of the experimental set up that generates the event. The concept of
propensity  of an event is covered by such objective randomness.

Before discussing the propensity of some event, its dispositionality might be
considered. Only possible events can be probable. Possibil ity concerns the ability
of the event to occur, its ‘happen ability’ (whereas probability concerns its tendency
to occur). Identically, it concerns the ability of a proposition to be true. Necessity is
the dual of possibility: necessity is the impossibility of the contrary.

2.3.2. Subjective Uncertainty.

Objective properties of uncertainty are supposedly linked to the world and to the
information. Subjective properties of uncertainty are linked to Your opinion about the
true value of the data as derived from the available information.

Data are believable or probable if You accept them, maybe temporarily. Data are
doubtful if not believable or at worst if You would be willing to accept them, but
then with a very strong reluctance.
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The relation between probability (equated to belief in the subjective context) and
possibility as encountered in objective uncertainty can also be described in the
subjective context. Possibility and necessity are the epistemic properties that
reflect Your opinion about the truth statement. In particular, only possible statements
can be believed.

Unreliability reflects Your opinion about the source of the data, opinion that is
transferred secondarily to the data.

Irrelevance concerns Your opinion about the data and decidability concerns
Your ability to decide if the information is true or false.

The major source of uncertainty is imprecision. Consider the simplest case, the
ambiguity case. When You learn that the food is hot, You are in a state of uncertainty
as the food can be either spicy or warm. Nevertheless, that state of uncertainty can be
refined. Usually you know more than just the fact that the food is spicy or warm. If
you are in a Thaï restaurant, hot will probably mean spicy whereas in an English
restaurant, hot will probably mean warm.

Uncertainty usually admits some kind of ordering, therefore it is the privileged
domain of application for quantitative modeling, the probability model being the most
famous, but hardly the only one today. Imprecision induces uncertainty but the nature
of this uncertainty and its quantification will depend on the type of imprecision.

3. Modeling.

Models for imperfect data can be separated into symbolic-qualitative and numeric-
quantitative models. Most quantitative models concern uncertainty. An exception is
fuzzy sets theory that addresses imprecision. Symbolic models rather concern
deduction based on soft knowledge than data representation but of course one cannot
create new deduction models without appropriately adapting the data representation
by introducing new operators.

3.1. The Symbolic Approach: Non Monotonic Logics.

In the past, logicians have focused on developing deduction schemata that permit the
deduction of true conclusions from true premises. However, when it comes to apply
these methods to commonsensical problems, the whole procedure collapses.

In classical logic, if you know that Tweety is a bird, you cannot deduce that Tweety
flies as the rule ‘every bird flies’ is wrong (because there are exceptions).
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Nevertheless, it is a pragmatic commonsense attitude to conclude that Tweety flies
until there are reasons to believe otherwise and to go on deducing other facts that are
deduced from the fact that Tweety flies. Of course, the new deductions could be
defeated by a new piece of evidence. That Tweety flies is a temporary defeasible
deduction then can nevertheless be assumed as a working hypothesis. Therefore new
deduction operators had to be defined that could model this defeasible reasoning,
deduction operators that are non-monotonic in that the set of deductions they allow
does not increase monotonically by the adjunction of new pieces of information but
could even decrease (when a new piece of information justifies the retraction of
previously deduced facts). As an example, the information “Tweety is a penguin”
coupled with the information “penguins do not fly” justifies the retraction of the
previously non-monotonically deduced fact that Tweety flies and the deduction that
Tweety does not fly.

A whole class on non-monotonic logic has been then introduced since the late 70’s.
(Bobrow (1980), Ginsberg (1988), Lukaszewicz (1990), Reiter (1987)) The properties
of the non-monotonic deduction operators have been defined, special techniques like
default logic, hypothetical reasoning, defeasible reasoning have been proposed. Their
aim is to reason from rules with non explicit exceptions within classical logic. This
logic tries to deduce as much as possible from these rules in that they apply them
except when it can be proved that the data are indeed members of the set of
exceptions or when inconsistency would be deduced.

The introduction of non-monotonic reasoning is conceptually satisfactory but its cost
might become prohibitively expensive. Indeed, in classical logic, any fact, once
deduced, will stay true whatever new facts are introduced. With non-monotonic
reasoning, this is not a valid strategy. All assumptions used to deduce a fact must be
recorded. So whenever an assumption previously accepted turns out to be
inapplicable, the deduced facts must be reconsidered. A fact will be retracted, except
if another chain of reasoning could still be applied that leads to its deduction. Of
course, the storage of all underlying assumptions used to deduce the fact can cause
heavy overhead.

3.2. The Quantification of Imprecision: Fuzzy sets.

Imprecision is essentially represented by a disjunctive information that characterizes a
set of possible values in which the actual value is known to belong. Recently the
classical concept of set has been extended into fuzzy sets that have been used to
characterize ‘ordered’ disjunctive information.

Classically, sets are crisp in the sense that one element either belongs to a set or is
excluded from it. Zadeh (1965) introduces the idea of non-crisp sets., called fuzzy
sets. Fuzziness is a property related to the use of vague predicates like in 'John is tall'.
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The predicates are vague, fuzzy because the words used to define them are themselves
ill defined, vague, fuzzy (Black 1937). The idea is that belonging to a set admits a
degree that is not necessarily just 0 or 1 as it is the case in classical set theory. For
some elements of the universe of discourse, one cannot say that it belongs or not to
the set. At most one can assess some degree of membership µA(x) of the element x to

the fuzzy set A. This function generalizes the classical indicator function IA(x) of a
set:

IA(x) = 1 if x∈ A

IA(x) = 0 if x∉ A

Zadeh replaces the range {0, 1} by the interval [0, 1].

New concepts like fuzzy numbers (e.g. several, few), fuzzy probability (likely), fuzzy
quantifiers (most), fuzzy predicates (tall), and the impact of linguistic hedges (very)
can be formalized (Dubois and Prade, 1980). Classical set operators like union,
intersection and negation have been generalized. The most classical solution is based
on the min-max operators:

µ A (x) = 1 - µΑ(x)

µΑ∪Β (x) = max ( µΑ(x) , µΒ(x) )

µΑ∩Β (x) = min ( µΑ(x) , µΒ(x) )

Other operators have been proposed that belong to the family of triangular norms and
co-norms (Dubois and Prade, 1985b, Yager, 1991). The generalization of the
implication operator turns out to be less obvious, especially when it is considered in
the context of the modus ponens as encountered in approximate reasoning (Smets
1991b).

The law of excluded middle does not apply to fuzzy sets. Indeed µΑ∩ A (x) = min (

µΑ(x) , µA (x) ) can be larger than 0. This must look odd at first sight. This translates

nothing but the fact that one can be somehow tall and not tall simultaneously, a
perfectly valid property.

Mathematically fuzzy sets theory generalizes the concept of set. The model can be
used wherever sets can be used, and therefore is not restricted to any particular form
of imperfect data. Its simplest domain of application is the modeling of imprecision
and vagueness. Fuzziness creates an order among the possible values in which the
actual value is known to belong.

Several authors have tried to disregard fuzzy sets theory by claiming that it is
subsumed by probability measure. This Procustean1 attitude completely misfires.

1 Procuste was a greek bandit. He wanted that travellers passing through his place
sleep in his bed. But he wants them to fit the bed perfectly, so when they were smaller
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Fuzzy set theory concerns the belonging of a well-defined individual to an ill-defined
set whereas probability concerns the belonging of a not yet defined individual to a
well-defined set. Introducing random sets does not change the conceptual picture. Of
course there are mathematical relations between the two theories but the problem is
not with the mathematical comparison but with a comparison of the problems they try
to model. Fuzziness deals with imprecision, probability with uncertainty. Of course,
fuzziness induces uncertainty. One could defend that when I know that John is tall, I
can build a probability measure on John’s height. This does not mean that the grade
of membership is a probability (Smets 1985)

3.3. The Quantification of Uncertainty: Sugeno’s Fuzzy measures.

Another concept developed by Sugeno (1977) has received the label fuzzy. Sugeno
studied functions that express uncertainty associated with a statement ‘x belongs to S’
where S is a crisp set (generalization to fuzzy sets S is possible but not important
here) and x is a particular arbitrary element of X which is not a priori located in any
of the subset of X. The Sugeno measure g satisfies the following

G1: g(Ø) = 0 g(X) = 1
G2: for all A,B”X, if A”B, then g(A)≤g(B)
G3: for all Ai”X, i∈ N, if A1”A2”... or A1⊇ A2⊇ ..., 

then limi→∞g(Ai) = g(limi→∞Ai)

The Sugeno measure for finite X is just a normalized measure, monotonous for
inclusion. It fits with probability measures, possibility measures, necessity measures,
belief functions, possibility measures..... It has been called ‘fuzzy’ measure but should
not be confounded with fuzzy sets.

3.4. Possibility and Necessity Measures.

3.4.1. Possibility measure.

Incomplete information such as "John's height is above 170" implies that any height h
above 170 is possible and any height equal or below 170 is impossible. This can be
represented by a ‘possibility’ measure defined on the height domain whose value is 0
if h < 170 and 1 if h is ≥ 170 (with 0 = impossible and 1 = possible). Ignorance results
from the lack of precision, of specificity of the information "above 170".

than the bed, he stretched them, and when they were longer, he chopped off the
excess.
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When the predicate is vague like in "John is tall', possibility can admit degrees, the
largest the degree, the largest the possibility. But even though possibility is often
associated with fuzziness, the fact that non fuzzy (crisp) events can admit different
degrees of possibility is shown in the following example. Suppose there is a box in
which you try to squeeze soft balls. You can say: it is possible to put 20 balls in it,
impossible to put 30 balls, quite possible to put 24 balls, but not so possible to put 26
balls...These degrees of possibility are degrees of realizability and totally unrelated to
any supposedly underlying random process.

Identically ask a salesman about his forecast about next year sales. He could answer:
it is possible to sell about 50K, impossible to sell more than 100K, quite possible to
sell 70K, hardly possible to sell more than 90K... His statements express what are the
possible values for next year sales. What the values express are essentially the sale
capacity. Beside, he could also express his belief about what he will actually sell next
year, but this concerns another problem for which the theories of probability and
belief functions are more adequate.

Let Π:2Ω→[0, 1] be the possibility measure defined on a space Ω with Π(A) for

A”Ω being the degree of possibility that A (is true, occurs...). The fundamental
axiom is that the possibility Π(A∨ B) of the disjunction of two propositions A and B is

the maximum of the possibility of the individual propositions Π(A) and Π(B). (Zadeh

1978, Dubois and Prade, 1985a):
Π(A∨ B) = max ( Π(A) , Π(B) ). (3.1)

Usually one requires also Π(Ω) = 1.

As in modal logic, where the necessity of a proposition is the negation of the
possibility of its negation, one defines the necessity measure N(A) given to a
proposition A by:

N(A) = 1 - Π(¬A)

In that case, one has the following:
N(A∧ B) = min ( N(A) , N(B) )

Beware that one has only:
Π(A∧ B) ≤ min ( Π(A) , Π(B) )

N(A∨ B) ≥ max ( N(A) , N(B) ).

Let Ω be the universe of discourse on which a possibility measure Π  is defined.

Related to the possibility measure Π:2Ω→[0, 1], one can define a possibility
distribution  π:Ω→[0, 1],

π(x) = Π({x}) for all x∈Ω .

Thanks to (3.1), one has
Π(A) = max x∈ A π(x) for all A in Ω.
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A very important point in possibility theory (and in fuzzy set theory) when only the
max and min operators are used is the fact that the values given to the possibility
measure or to the grade of membership are not intrinsically essential. The only
important element of the measure is the order they create among the elements of the
domain. Indeed the orders are invariant under any strictly monotonous
transformation. Therefore a change of scale will not affect conclusions. This property
explains why authors insist on the fact that possibility theory is essentially an ordinal
theory, a nice property in general. This robustness property does not apply once
addition and multiplication are introduced as is the case with probability and belief
functions.

As an example of the use of possibility measure versus probability measure, consider
the number of eggs X that Hans is going to order tomorrow morning (Zadeh 1978).
Let π(u) be the degree of ease with which Hans can eat u eggs. Let p(u) be the

probability that Hans will eat u eggs at breakfast tomorrow. Given our knowledge,
assume the values of π(u) and p(u) are those of table 4.

Table 4: The possibility and probability distributions associated with X.

u 1 2 3 4 5 6 7 8

π(u) 1 1 1 1 .8 .6 .4 .2

p(u) .1 .8 .1 0 0 0 0 0

We observe that, whereas the possibility that Hans may eat 3 eggs for breakfast is 1,
the probability that he may do so might be quite small, e.g., 0.1. Thus, a high degree
of possibility does not imply a high degree of probability, nor does a low degree of
probability imply a low degree of possibility. However, if an event is impossible, it is
bound to be improbable. This heuristic connection between possibilities and
probabilities may be stated in the form of what might be called the
possibility/probability consistency principle  (Zadeh 1978).

3.4.2. Physical and Epistemic Possibility.

Two forms of (continuous valued) possibility have been described: the
physical and the epistemic. These 2 forms of possibility can be recognized by their
different linguistic uses: it is possible that and it is possible for (Hacking
1975). When I say it is possible that Paul's height is 170, it means that for all I know,
Paul's height may be 170. When I say it is possible for Paul's height to be 170, it
means that physically, Paul's height may be 170. The first form, 'possible that', is
related to our state of knowledge and is called epistemic. The second form, 'possible
for', deals with actual abilities independently of our knowledge about them. It is a
degree of realizability. The distinction is not unrelated to the one between the
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epistemic concept of probability (called here the credibility) and the aleatory one
(called here chance). These forms of possibilities are evidently not independent
concepts, but the exact structure of their interrelations  is not yet clearly established.

3.5. Relation between fuzziness and possibility .

Zadeh has introduced both the concept of fuzzy set (1965) and the concept of
possibility measure (1978). The first allows one to describe the grade of membership
of a well-known individual to an ill-defined set. The second allows one to describe
what are the individuals that satisfy some ill-defined constraints or that belong to
some ill-defined sets.

For instance µTall(h) quantifies the membership of a person with height h to the set of

Tall men and πTall(h) quantifies the possibility that the height of a person is h given

the person belongs to the set of Tall men. Zadeh’s possibilistic principle
postulates the following equality :

πTall(h) = µTall(h) for all h∈ H

where H is the set of height = [0, ∞)

The writing is often confusing and would have been better written as
π(h|Tall) = µ(Tall|h) for all h∈ H

or still better
If µ(Tall|h) = x then π(h|Tall) = x for all h∈ H

The last expression avoids the confusion between the two concepts. It shows that they
share the same scale without implying that a possibility is a membership and vice
versa. The previous expression clearly indicates the domain of the measure (sets for
the grade of membership µ and height for the possibility distribution π) and the

background knowledge (the height for µ and the set for π). The difference is

analogous to the difference between a probability distribution p(x|θ) (the probability

of the observation x given the hypothesis θ) and a likelihood function l(θ|x) (the

likelihood of the hypothesis θ given the observation x) in which case Zadeh’s

possibilistic principle becomes the likelihood principle:
l(θ|x) = p(x|θ)

The likelihood of an hypothesis θ given an observation x is equal to the probability of

the observation x given the hypothesis θ.

The initial writing of Zadeh’s possibilistic principle is the one most usually
encountered but its meaning should be interpreted with care. It states that the
possibility that a tall man has a height h is equal numerically to the grade of
membership of a man with height h to the set of tall men.
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The possibility measure Π is related to the possibility distribution π by

ΠA(X) =max x∈ X πA(x),

where X is a crisp set. It generalizes into :
ΠA(X) =max x∈Ω  min(πA(x), µX(x)),

where Ω is the domain of x and X is a fuzzy subset of Ω. One can thus express the
possibility that the height of a person is about 180 cm given the person is tall.

In general, one has a relation

ΠA(X∪ Y) = max ( ΠA(X) , ΠA(Y) )

ΠA∪ B(X) = max ( ΠA(X) , ΠB(X) )

One does not have a similar relation with intersection operators. It is true that
µA∩B(X) = min ( µA(X) , µB(X) )

but one should not deduce that
ΠA∩B(X) = min ( ΠA(X) , ΠB(X) )

as erroneously assumed by careless writers. Nor do we have
ΠA(X∩Y) = min ( ΠA(X) , ΠA(Y) ).

By duality we have also the following relation between the necessity measure
NA(X∩Y) = min ( NA(X) , NA(Y) )

NA∩B(X) = min ( NA(X) , NB(X) )
but there is no similar relation for the union operators.

The link between fuzzy set and possibility measure is established through Zadeh’s
possibilistic principle. An identical principle could also be used to link both fuzzy sets
and possibility measure with partial truths. Let us assume.

ν(John is Tall | height(John) = h) = µTall(h) = πTall(h)

So the degree of truth, if such a thing exists, of a proposition ‘John is tall’ knowing
that ‘John’s height is h’ is equated numerically to the grade of membership of a
person with height h to the set of Tall men and therefore to the possibility that the
height of a Tall person is h.

3.6. Probability Theory.

Since its beginning as a model for uncertainty in the 17th century, probability has
been given at least four different meanings.
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Probability measure quantifies the degree of probability P(A) (whatever probability
means) that an arbitrary element X∈Ω  belongs to a well-defined subset A”Ω. It

satisfies the following property :

P1: P(Ø) = 0 P(Ω) = 1
P2: For all A, B”Ω, if A∩B=Ø, P(A∪ B) = P(A) + P(B)

P3: For all A, B”Ω, if P(B)>0, then P(A|B) = P(A∩B) / P(B)

where P(A|B) is the probability of that X∈ A given it is known that X∈ B. Such

definition can be extended to fuzzy events (Zadeh, 1968, Smets 1982) which further
enhances, if still needed, the difference between probability and fuzziness. As an
example consider the probability that the next man who enters the room is a tall man.
Could we say that such a probability is .7 or is that probability itself a fuzzy
probability? This is still unresolved, this might explain today’s lack of interest in that
concept.

Related to the probability measure P:2Ω→[0, 1], one defines a probability distribution

p:Ω→[0, 1] such that :

p(x) = P({x}) for all x∈Ω .

By property P2,
P(A) = ∑

x∈ A
 p(x) for all A”Ω.

Notice that the relation between P and p is the same as the relation between Π and π,

(but not as the one between bel and m (as bel and m are both defined on the same
frame 2Ω) see the chapter on belief functions).

3.6.1. The classical theory.

The initial definition of probability, as defended by Laplace, assumes the existence of
a fundamental set of equipossible events. The probability of an event is then the
ratio of the number of favorable cases to the number of all equipossible cases. Of
course, the concept of equipossible cases is hardly defined in general. It works with
applications where symmetry can be evoked, as it is the case for most games of
chance (dice, cards...). When symmetry cannot be applied, the Principle of
Insufficient Reason is evoked (also called Principle of Indifference (Keynes 1962)). It
essentially states that alternatives are considered as equiprobable if there is no reason
to expect or prefer any one over the other. As nice as it might seem, the Principle of
Insufficient Reason is a very dangerous tool whose application has led to most errors
described in probability theory. It is hardly defended today.
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Just to show the danger of its application, suppose all you know about John’s wife is
that her name is either Joan or Jill or Joey. In that case, it is acceptable that none of
the three names is considered as more likely than any other. But is there any reason
for the fact ‘the name is Joan’ to be less likely than the fact ‘the name is either Jill or
Joey’? Probability theory requires a “yes” answer as the Principle of Insufficient
Reason and axiom P2 allocates a probability 1/3 to the first event and 2/3 to the
second. Common sense does not require such a clear “yes”.

3.6.2. Relative frequency theory.

Probability is essentially the convergence limit of relative frequencies under repeated
independent trials (Reichenbach 1949, von Mises 1957). It is not concerned with
capturing commonsensical notions, it is a purely prescriptive definition. The
definition tries to comply with the operationalist version of scientific positivism:
theoretical concepts must be reducible to concrete operational terms. It is strongly
related to the concept of proportion, and its direct generalization, measurability
(limited to its objective form).

It is by far the most widely accepted definition even though it has been shown not to
resist criticisms. Convergence limits cannot be observed, it postulates that past
observed propensities for events to occur will continue on into the future, it does not
apply to single events, it suffers from the difficulty of specifying the appropriate
reference class, it never explains how long must be a long run that will converge to its
limit... Nevertheless, it ‘works’ and this pragmatic argument explains its popularity.

3.6.3. Subjective (Bayesian, personal ) probability.

For the Bayesian school of probability, the probability measure quantifies Your (You
is the agent) credibil ity that an event will occur, that a proposition is true. It is a
subjective, personal measure.

The additivity of the credibility measure (axiom P2) is essentially based on betting
behavior arguments. Bayesians define P(A) as the fair price p You propose that a
player should pay to play a game against a banker, where the player receives $1 if A
occurs and $0 if A does not occur. The concept of fairness is related to the fact that
after deciding p You are ready to be either the player or the banker. In order to avoid
Dutch book (i.e., a set of simultaneous bets that would lead to a sure loss), You
must assess the probability of the subset of Ω according to P1 and P2. The
justification of P3 by diachronic2 Dutch books (Jeffrey 1988, Teller 1973, 1976) is

2  i.e., when time is involved, where there might be some bets before and after some
event.
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less convincing as it is based on a Temporal (Diachronic) Coherence postulate
(Jeffrey 1988, Earman 1992) that can be objected to. It requires that the way You
commit yourself now to organize Your bets after A has occurred if it occurs should be
the same as the bets You would accept once A has occurred. The Temporal
Coherence claims that hypothetical bets (bets on the hypothesis that A occurs) should
be equated to factual bets (bets after A has occurred) (Savage 1954, De Finetti 1974).

Another algebraic justification for the use of probability measure to quantify
credibility is based on Cox’s axiom (Cox 1946). It states essentially that the
credibility of A (not A) should be a function of the credibility of A, and the credibility
of ‘A and B’ should be a function of the credibility of A given B and the credibility of
B. Adding a strict monotonic requirement leads to the conclusion that the probability
measure is the only measure that satisfies both requirements (Dubois et al. 1991).

As compelling as Cox’s justification seems to be, it can nevertheless be criticized.
Strict monotony kills possibility measures and of course possibility theory or belief
functions theory advocates reject the first requirement as being not so obvious (Clarke
et al. 1991).

3.6.4. Logical probabilities.

Some attempts have been proposed to avoid the subjective component of the
Bayesian probability. It fits with the objectivity one likes to defend for scientific
rationalism.

Keynes (1962) defined probability as a logical relation between a proposition and
a corpus of evidence. While propositions are ultimately either true or false (no fuzzy
propositions are involved here), we express them as being probable in relation to our
current knowledge. A proposition is probable with respect to a given body of
evidence regardless of whether anyone thinks so.

Bayesians consider the same kind of relation between knowledge and a proposition
but admit it is subjective and therefore that the probability of a proposition is not an
objective property that exists regardless of whether anyone thinks so.

The concept of Corroboration introduced by Popper (1959) and the concept of
Confirmation introduced by Carnap (1950) both fit with the overall schema of
defining a logical measure of probability.

This program, as intellectually attracting as it seems, unfortunately fails to explain
how to define the probability weight to be given for these relations. On that
point the strongest are the Bayesians who can use their betting behavior as a guideline
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on how to assess probabilities. The existence of such operational method to assess a
measure of probability is important as it provides a meaning to the .7 encountered in
the proposition “ the probability of A is .7”. The lack of such well-established and
widely accepted operational meaning in fuzzy set theory and possibility theory, in
upper and lower probabilities theory, and in belief functions theory has been the
source of serious criticisms (see nevertheless Smets and Magrez (1988) for fuzzy sets
theory and Smets and Kennes (1990) for the transferable belief model).

3.7. Upper and lower probability models.

Smith (1961, 1965), Good (1950, 1983) and Whaley (1991) suggested that personal
degrees of belief cannot be expressed by a single number but that one can only assess
intervals that bound them. The interval is described by its boundaries called the upper
and lower probabilities. Such interval can easily be obtained in a two-person situation
when one person, Y1, communicates the probability of some events in Ω to a second
person , Y2, by only saying that the probabilities P(A) belong to an interval, for all
A”Ω. Suppose Y2 has no other information about the probability on Ω. In that case,
Y2 can only build a set P of probability measures on Ω compatible with the
boundaries provided by Y1. All that is known to Y2 is that there exists a probability
measure P and that P∈ P. Should Y2 learn then that an event A”Ω has occurred, P

should be updated to PA where PA is this set of conditional probability measures
obtained by conditioning the probability measures P∈ P on A. (Smets 1987, Fagin

and Halpern 1991, Jaffray 1992).

One obtains a similar model by assuming that one’s belief is not described by a single
probability measure as do the Bayesians but by a family of probability measures
(usually the family is assumed to be convex). Conditioning on some event A”Ω is
obtained as in the previous case.

A special case of upper and lower probabilities has been described by Dempster
(1967, 1968). He assumes the existence of a probability measure on a space X and a
one to many mapping M from X to Y. Then the lower probability of A in Y is equal
to the probability of the largest subset of X such that its image under M is included in
A. The upper probability of A in Y is the probability of the largest subset of X such
that the images under M of all its elements have a non empty intersection with A. In
the Artificial Intelligence community, this theory is often called the Dempster-Shafer
theory.

A generalization of a  upper and lower probability model to second-order
probability model is quite straightforward. Instead of just acknowledging that
P∈ P, one can accept a probability measure P* on pΩ, the set of probability measures
on Ω. So for all A”pΩ, one can define the probability P*(A ) that the actual
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probability P on Ω belongs to the subset A of probability measures on Ω. In that
case, the information P∈ P  induces a conditioning of P* into P*(A |P ) =

P*(A∩P)/P*(P).

Second-order probabilities, i.e. probabilities over probabilities, do not enjoy the same
support as subjective probabilities. Indeed, there seems to be no compelling reason to
conceive a second-order probability in terms of betting and avoiding Dutch books. So
the major justification for the subjective probability modeling is lost. Further
introducing second-order probabilities directly leads to a proposal for third-order
probabilities that quantifies our uncertainty about the value of the second-order
probabilities.... Such iteration leads to an infinite regress of meta-probabilities that
cannot be easily avoided.

3.8. Credibility: the Transferable Belief Model.

Information can induce some subjective, personal credibility (hereafter called
belief) that a proposition is true. Sometimes, its origin can be found either in the
random nature of the underlying event or in the partial reliability that we
give to the source of information.

In the first case, one ends up with a probability measure if one accepts the
frequency principle (Hacking 1965) that, given the chance that a random event
X might occur is p, our degree of belief that it will occur is p.

IF chance(X)=p THEN belief(X) = p

This is one of the fundamental requirements for the classical Bayesian model,
as it relates chance and belief.

When randomness is not involved, there is no necessity for beliefs at the credal
states (the psychological level where beliefs are entertained) to be quantified by
probability measures (Levi 1984). The coherence principle advanced by the
Bayesians to justify probability measures is adequate in a context of decision
(Degroot 1970), but it cannot be used when all one wants to describe is a cognitive
process. Beliefs can be entertained outside any decision context. In the
transferable belief model (Smets 1988) we assume that beliefs at the credal
level are quantified by belief functions (Shafer 1976). When decisions must be made,
our belief held at the credal level induces a probability measure held at the so-called
'pignistic' level (the level at which decisions are made). This probability measure
will be used in order to make decisions using expected utilities theory. Relations
between belief functions held at the credal level and probabilities held at the pignistic
level are given in Smets (1990).
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4. Combining models of ignorance.

The various forms of ignorance can be encountered simultaneously and it is necessary
to be able to integrate them. In common-sense reasoning, two forms of ignorance,
sometime three, are often encountered in the same statement. Just to give an idea of
the problem, consider the following example of generalized modus ponens.

I strongly believe that:
‘If the company sale is large, then the salary is good'.

It is quite possible and I somehow believe that:
 ‘Company X sales are very large'.

∴  What can I say about the salary of Company X employees?

This example is probably too complex to be encountered in practice, but it includes
most forms of ignorance.

Another combination that is more realistic enhances the links between possibility,
beliefs and surprise. Let the two statements:
S1 = ‘It is quite possible that John will come but I don’t believe he will.’
S2= ‘It is hardly possible that John will come and I don’t believe he will.’
Suppose You tell me ‘John comes’. My reaction after learning that fact could be
translated by: in case 1, ‘well, so he came!’, in case 2, ‘really, are you sure!’. In case 2
I am strongly surprise, whereas in case 1, I am not so surprise. Therefore a
modelisation of the concept of ‘surprise’ might have to take in consideration both the
degrees of possibility and of beliefs.

To deal with problems like this, beliefs, possibilities, fuzziness need to be combined,
and a set of metalanguages must be constructed. Care must be given however to
what the domains are of each operator. For instance, probability deals with two
domains, the set of propositions (as are usually mentioned) and the truth domain (that
is usually disregarded as it contains only two elements, but must be considered once
fuzzy propositions are accepted).

The first problem is to investigate the connections between the probability theory
in its frequency approach and the physical possibility theory. The next problem is to
investigate the connections between subjective probability measures, belief functions
and epistemic possibility measures. Finally, one must establish the connections
between the physical properties and the epistemic properties. There is further the
problem of extending all these theories when the propositions involved are fuzzy.
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Almost no work has been done in this area. However, its importance for data
fusion is obvious: when several sensors provide information, how do we recognize
the nature of the ignorance involved and select the appropriate model, how do we
collapse them into more compact forms, how do we combine them, how do we take
into consideration the redundancies, the correlations and the contradictions? All these
problems must be studied and the implementation of potential solutions tested.

Understanding the meaning of statements and their translation into
appropriate models is delicate, if not hazardous. For example, how do we translate
"usually bald men are old". Which of P(bald|old) or P(old|bald) is somehow large?
"When x shaves, usually x does not die". Which conditioning is appropriate:
Pl(dead|shaving) or Pl(shaving|dead)? Is it a problem of plausibility or possibility?
These examples are just illustrative of the kind of problems that must be addressed.

5. Conclusions.

The conclusions are more in the form of a plea for ecumenism applicable to both the
Information Science and the Uncertainty communities. A plain rejection of the
problem of Uncertainty by the first group is highly optimistic. Null values problems
are quite old and messy,  and many of the proposed solutions are often too shallow to
express reality. Beside the use of sophisticate solutions might be unbearable when
implemented. As indicated in the introductory remark, truth lays halfway between the
Information Sciences Radical and the Uncertainty Zealot attitudes.

We have shown that imprecision and uncertainty are really multiform, and that none
of the models available today can fit with all forms of imperfect data. The real
problem is to have an open mind attitude and to avoid the dogmatic attitude that leads
to claims like: ‘I can do everything with my theory’ or ‘the forms not covered by their
models are useless’. We will not insist on the arrogance that underlies such claims. To
force fuzzy sets into the probabilitisc mold, or to claim that fuzzy sets theory embeds
all other theories are usually unfounded. Each model aims at describing some forms
of imperfection. They are complementary, not concurrent.

When confronted with imperfect data, the user should first try to realize the form of
imperfection he/she is facing, then see which model is the most appropriate. The real
challenge is in recognizing the nature of the imprecision and uncertainty encountered
in a given problem. This paper tried to give some hints in that direction. The
following papers on uncertainty will present more in depth studies of the major
models available today: those based on logic, on probability functions, on possibility
functions and on belief functions. Some synthesis is presented in the last papers.
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Table 1 : S TRUCTURED THESAURUS OF IMPERFECTION.

Imperfect Information.

I. Imprecision: Related to the content of the statement.
Informational property, External world, Negligence.
Several worlds satisfy the statement.

I.1. Data without Error.
Vagueness :

Ambiguous Has several meanings.
Amphibologic Has several meanings.
Approximate Close to reality and well defined.
Vague Not well defined.

Missing :
Incomplete Something missing.
Deficient Missing, applies when needed.

I.2. Data tainted with Error.
Erroneous Just wrong.
Incorrect Just wrong.
Inaccurate Essentially imprecise, but not completely erroneous.
Invalid Would lead to unacceptable conclusions.
Distorted Wrong but not far from correct.
Biased Tainted by a systematic error.
Nonsensical Cannot be fitted to reality.
Meaningless Cannot be fitted to reality.

II. Inconsistency.
No world satisfies the statement.

Conflicting Disagreement among the data.
Incoherent A property of the conclusions drawn from the data
Inconsistent Incoherent with a temporal connotation.
Confused A milder form of incoherence.

III. Uncertainty: Induced by a lack of information, by some imprecision.
Ordering on the several worlds that satisfy the statement.

Property of the information. Objective. External uncertainty.
Propensity.

Random Subject to change.
Likely Will probably occur.

Disposition.
Possible Ability to occur, to be true
Necessary Negation is impossible, not possible.

Property of the observer. Subjective. Internal uncertainty.
Ignorance, Epistemic property, Internal state of knowledge.

Believable Observer accepts the data, but is ready to reconsider it.
Probable Observer accepts the data, but is ready to reconsider it.
Doubtful Observer can hardly accept the data.
Possible Observer’s considers that the data could be true.
Unreliable Observer opinion about the source of the data.
Irrelevant Observer doesn’t care about the data.
Undecidable Inability to decide if true or false.
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Table 2 : T HESAURUS  ON UNCERTAINTY AND INCOMPLETENESS.

Imperfect :
Something is imperfect if it is incomplete , faulty .

Negligent :
Someone who is negligent fails to deal with something or someone with the right
amount of care or concern, or fails to do something which they ought to do.
A lack of proper care or attention.

Imprecise :
Something that is imprecise is not clear, accurate, or precise, not accurately
expressed, not scrupulous in being inexact.

Vague :
Vague is used to describe things that people say or write that are not clearly
explained or expressed, so that they can be understood in different
ways.
It results in uncertain or  ill-defined meaning .

Ambiguous  :
Something that is ambiguous is unclear or confusing because it can have more
than one possible meaning .
It can be due to vagueness.

Amphibologic :
Synonymous to ambiguous.

Approximate :
An approximate number, amount, time, position, etc. is close (or similar) to the
correct number, amount, etc., but is probably slightly different from it because it
has been calculated quickly rather than exactly.
An idea or description of something that is approximate provides some indication of
what it is like but is not intended to be absolutely precise or accurate .

Fuzzy :
If your thoughts are fuzzy or what you are thinking about is fuzzy, you are confused
and cannot see an idea clearly or make a decision. You also describe something as
fuzzy when it is not clearly defined  and is indistinct  or vague .

Missing :
If something is missing, it is not in its place, it is lost, not present .
You say that something is missing from a statement, report, etc. when it has not been
included in it and you think that it should have been.

Incomplete :
Something that is incomplete does not have all the parts that it should have,
Not entered, not filled in.

Deficient :
If someone or something is deficient in a particular thing, they do not have the full
amount of it that they need in order to function normally or work properly.
Someone or something that is deficient is not good enough for a particular purpose or
standard.
Incomplete or insufficient in some essential respect .

Erroneous :
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Beliefs, opinions, methods etc. that are erroneous are incorrect or only partly
correct.

Incorrect :
Something that is incorrect is wrong, untrue , inaccurate .

Inaccurate :
Something that is inaccurate is not correct, not precise and not conforming
exactly to a standard  or to truth.

Invalid :
If an argument, conclusion, result, is invalid, it is not acceptable, because it is
based on a mistake . Not sound logically.

Distorted :
If an argument or a statement is distorted, its meaning becomes different and
misrepresenting of what it should be.

Biased :
Subject to a constant error.

Nonsensical :
That do not make sense, absurd, foolish, stupid, ridiculous, untrue.

Meaningless :
Without any meaning, but also: without importance or relevance.

Conflicting :
If two or more things are in conflict, they are very different and not
compatible. It seems impossible for each of them to be true, impossible for them to
exist together, or for each of them to be believed by the same person.

Incoherent :
If something is incoherent, it is unclear and difficult to understand, rambling in
speech or reasoning.

Inconsistent :
Someone who is inconsistent is unpredictable  and behaves differently is a
particular situation each time it happens, rather than doing or saying the same thing
each time.
Not compatible or not in harmony
Not constant to the same principles of thought or action.

Confused :
Something is confused if it does not have any order or pattern and is difficult to
understand because of this.

Random :
Something that is random happens or is chosen without a definite plan, pattern, or
purpose. Made or done without method or conscious choice.

Likely :
Indicates that something is probably the case or will probably happen in a particular
situation.

Believable:
Something you think is likely.
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Doubtful :
That seems unlikely or uncertain.

Unreliable :
If people, machines, or methods are unreliable, you cannot trust them or rely on them.
That may be not relied on.

Irrelevant :
An irrelevant fact, remark, is not connected with what you are focusing or dealing
with, and is therefore not important.
Not related to the matter in hand.

Ignorance :
Lack of knowledge.

Undecidable :
Which validity or truth cannot be decided, is questionable, or on which you cannot
make your mind.
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Table 3 : T HEORIES OF PROBABILITY.

A Taxonomy of the Normative or Prescriptive
Interpretations

of the Concept of Probability.

Classical Theory.
Definition: Probability of A is the ratio of the number of ‘favorable’ cases for A to the
number of all ‘equipossible’ cases.
Assumes the existence of a fundamental set of ‘equipossible’ events.
Equipossibility can be justified by some arguments of symmetry.
Extended to cover any situation characterized by a lack of prior knowledge about the
propensity of fundamental events.

Relative Frequency Theory.
Definition: The convergence limit of relative frequency under repeated independent
trials.
Related to proportion and (objective) measures.

Subjective (Bayesian) Theory.
Definition: The probability is the degree of belief, of credibility that a proposition is
true, that an event will occur, given the agent’s corpus of evidence.
The relation between the proposition (event) and the corpus of evidence is subjective.

Operational Definition: P(A) is the prize a player is ready to pay for buying a game
where he receives $1 if A occurs, and $0 otherwise.
Probability Measures necessary to satisfy rationality in the context of Decision
Making.

Logical (or A Priori) Theory
Definition: The probability of A is a weighted logical relation between the proposition
A and a corpus of evidence.
The relation between the proposition and the corpus of evidence is objective.
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Table 4 : M ODELS FOR UNCERTAINTY ON FINITE FRAMES.
 The major axioms of each model (not complete)

Sugeno Measures : g:2Ω→[0, 1]

g(Ø) = 0 g(Ω) = 1
 g(A)≤g(B) ∀ A,B”Ω, A”B.

Special cases:

Possibility Measures : Π:2Ω→[0, 1]

Π(A∨ B) = max ( Π(A) , Π(B) ) ∀ A,B”Ω

Probability Measures: P:2 Ω→[0, 1]

P(A∪ B) = P(A) + P(B) - P(A∩B) ∀ A,B”Ω

Measures of Belief : bel:2Ω→[0, 1]

bel(A∪ B) ≥ bel(A) + bel(B) - bel(A∩B) ∀ A,B”Ω
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Belief function,

in DB A present with proba .6,,, A then B with .7 so B present with .42, cf Clarke.

To be considered as to be added???

? RMS (JTMS, ATMS... ) Kruse?
Certainty Factors?

3. Application Example
Relational DB Field Uncertainty

Tuple Uncertainty.
Key Uncertainty?

Query.

? Learning. ≠ Updating KM
Revision AGM
Conditioning. Bayes rule

CLARK D.A. (1990) Verbal Uncertainty Expressions: A
critical review of two decades of research.

Appendix.

An Unified Representation of Quantified Imprecision and
Uncertainty.

In order to describe the possible interrelations between the various forms of quantified
representations for uncertainty and imprecision, we present a data representation that
covers many cases, if not all. It is evidently a very heavy representation. Its generality
is obtained at the cost of its impracticality. Nevertheless its interest is in the fact it
enhances the exact meaning of the various quantities.

The overall idea is to represent families of labelled subsets of some space X. The set
X is called the object-domain. The labels themselves come from the label-
domains and qualified the elements and subsets of the object-domain X.

Unfortunately none of the various measures of uncertainty and imprecision has been
endowed with any unit. Should they have been, many errors and confusion would
have been avoided. Nobody is going to equate $ and £ or inches and cm, or worse
inches and $. So why not to create those units? May we suggest to call them
respectively but adding the postfix ‘it’ for ‘information unit’ like in the bit. (We use
probit even though the term is used in a totally different meaning in statistics.)

fuzzit  : the unit for the grade of membership of an element to a fuzzy set.
probit  : the unit for a probability measure
possit: : the unit of a possibility measure
necit  : the unit of a necessity measure
belit  : the unit of belief measure
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plausit  : the unit of a plausibility measure

For crisp sets, if x∈ A, its grade of membership to A is 1 fuzzit, if x∉ A, 0 fuzzit.

Due to the dual nature between possibility and necessity measures, one has:
 “ Π(A) = α possit “ is equivalent to “ N(¬A) = (1 - α) necit “

Due to the dual nature between belief and plausibility measures, one has:
 “ bel(A) = α belit “ is equivalent to “ pl(¬A) = (1 - α) plausit “

One should not write bel(Ω) = pl(Ω), but “bel(Ω) = 1 belit” is equivalent to “pl(Ω) =
1 plausit”.

The general form for a family of labelled subsets  of some space X is:

“ [ {(x1, µ1), (x2, µ2) , ...(xn, µn)}, {(w1, ν1), (w2, ν2), ...(wm, νm)}  ], [....] ... [....] ‘

We admit the convention that any pair (x, 0) contained in a list { } has been omitted.

The symbols mean :

x an element of the object-domain X.
µ an object-weight in fuzzit,

the grade of membership of the element x to a subset of X.
(x, µ) (object-element, object-weight)

{(x, µ) ...( )} a subset of X (crisp if all µ are 1, otherwise fuzzy)

w an element of the label-domain L
(in probit, possit or belit depending on L)

ν a label-weight in fuzzit,

the grade of membership of the element w to a subset of L.
(w, ν) (label-element, label-weight)

{(w, ν), ...( )}  a label in L that applies to the subset of X.(a label is a subset of

L)

[ { }, { } ] = [ subset S of X, label of S]  a labelled subset of X

“ [ subset S1 of X, label of S1], [ subset S2 of X, label of S2] ... [ ] ‘
a family of labelled subsets of X.
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Example  1: A subset.
Let X = (1, 2, 3, 4, 5). Let C be the set {1, 2, 3}.
The representation is:
“ [ {(1, 1), (2, 1), (3, 1)}, {(1, 1)} ] ‘

? problem what unit for the (1, 1)?is it just a set, or a set with a
proba = 1 of plaus or bel or nec or poss = 1.

Example 2:  A fuzzy subset.
Let X = (1, 2, 3, 4, 5). Let A be the fuzzy set with µA(1) = 1., µA(2) = .6, µA(3) = .3.

The representation is:
“ [ {(1, 1), (2, .6), (3,.3)}, {(1, 1)} ] ‘

Example 3: A probability distribution over X.
Let X = (1, 2, 3, 4, 5).
Let p be a probability distribution with p(1) = .2, p(2) = .5, p(3) = .3.
The representation is:
“ [ {(1, 1)} , {(.2, 1)}] , [ {(2, 1)} , {(.5, 1)}] , [ {(3, 1)} , {(.3, 1)}] ‘

Example 4:  A fuzzy probability distribution over X.
Let X = (1, 2, 3, 4, 5).
Let p be a probability distribution with
p(1) = .2,
p(2) is the fuzzy set: µp(2)(.5) = 1., µp(2)(.6) = .3, µp(2)(.7) = .1, µp(2)(.4) = .8.

p(3) is the fuzzy set: µp(3)(.3) = 1., µp(3)(.2) = .3, µp(3)(.1) = .1, µp(3)(.4) = .8.

The representation is:
“ [ {(1, 1)} , {(.2, 1)}] ,

[ {(2, 1)} , {(.5, 1) , (.6, .3) , (.7, .1) , (.4, .8)}] ,

[ {(3, 1)} , {(.3, 1) , (.2, .3) , (.1, .1) , (.4, .8)}] ‘

Example 5:  A probability distribution over fuzzy subsets of X (fuzzy random sets)
Let X = (1, 2, 3, 4, 5).
Let the fuzzy subsets

A with µA(1) = 1., µA(2) = .6, µA(3) = .3

B with µB(2) = .7, µB(3) = 1., µB(4) = .5

Let p be a probability distribution with
p(A) = .2,
p(B) = .8
The representation is:
“ [ {(1, 1), (2, .6), (3,.3)}, {(.2, 1)} ] ,

[ {(2, .7), (3, 1.), (4,.5)}, {(.8, 1)} ] ‘
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A dubious example as p(A) + p(B) = 1 but A∪ B ≠ X.

Example 6: A possibility distribution over X.
Let X = (1, 2, 3, 4, 5).
Let π be the possibility distribution with π(1) = .4, π(2) = 1., π(3) = .3.

The representation is:
“ [ {(1, 1)} , {(.4, 1)}] , [ {(2, 1)} , {(1., 1)}] , [ {(3, 1)} , {(.3, 1)}] ‘

Example 7:  A possibility measure over crisp subsets of X.
Let X = (1, 2, 3, 4, 5).
Let Π({1, 2}) = .7, Π({2,3,4}) = .5.

The representation is:
“ [ {(1, 1) , (2, 1)} , {(.7, 1)}] , [ {(2, 1) , (3, 1), (4, 1)} , {(.5, 1)}] ‘

Example 8:  A possibility measure over fuzzy subsets of X.
Let X = (1, 2, 3, 4, 5).
Let the fuzzy subsets

A with µA(1) = 1., µA(2) = .6, µA(3) = .3

B with µB(2) = .7, µB(3) = 1., µB(4) = .5

Let Π be a possibility measure with

Π(A) = .4,

Π(B) = 1.

The representation is:
“ [ {(1, 1), (2, .6), (3,.3)}, {(.4, 1)} ] ,

[ {(2, .7), (3, 1.), (4,.5)}, {(1., 1)} ] ‘

Example 9:  A basic belief assignment over crisp subsets of X.
Let X = (1, 2, 3, 4, 5).
Let a bba with m({1}) = .2, m({1, 2}) = .1, m({1, 4, 5}) = .7
The representation is:
“ [ {(1, 1)}, {(.2, 1)} ] , [ {(1, 1) , (2, 1)}, {(.1, 1)} ]

[ {(1, 1), (4, 1), (5, 1)}, {(.7, 1)} ] ‘

Example 10: A basic belief assignment over fuzzy subsets of X.
Let X = (1, 2, 3, 4, 5).
Let the fuzzy subsets

A with µA(1) = 1., µA(2) = .6, µA(3) = .3
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B with µB(2) = .7, µB(3) = 1., µB(4) = .5

Let Π be a possibility measure with

m(A) = .4,
m(B) = .6
The representation is:
“ [ {(1, 1), (2, .6), (3,.3)}, {(.4, 1)} ] ,

[ {(2, .7), (3, 1.), (4,.5)}, {(.6, 1)} ] ‘


