
Open-PSA Open-PSA Model Exchange Format - 1

Draft n°2.0d – 12/05/2008

The Open-PSA Initiative

Open-PSA Model Exchange Format

Open-PSA Open-PSA Model Exchange Format - 2

Draft n°2.0d – 12/05/2008

Title Open-PSA Model Exchange Format
Version 2.0d
Creation Date August 1st, 2007
Last modification date May 12, 2008
Editors Epstein Steven, Rauzy Antoine

Open-PSA Open-PSA Model Exchange Format - 3

Draft n°2.0d – 12/05/2008

Table of Contents

I. The Open-PSA Initiative...8
II. Introduction..10

II.1. Why Do We Need a Model Exchange Format? ...10
II.2. Requirements for the Model Exchange Format..11
II.3. Choice of XML...12
II.4. A Four-Plus-One Layers Architecture..12
II.5. Formalism...14
II.6. Organization of the document ..14

III. Anatomy of the Model Exchange Format ..16
III.1. Elements of a model ..16

III.1.1. Variables, Terms and Containers ...16
III.1.2. Stochastic Layer ...16
III.1.3. Fault Tree Layer ...17
III.1.4. Meta-Logical Layer ..17
III.1.5. Event Tree Layer ..17

III.2. Structure of a model ..18
III.2.1. Relationships between elements of a model...18
III.2.2. Giving more structure to a model...20
III.2.3. Containers as name spaces ...20
III.2.4. Definitions, Labels and Attributes..20

IV. Fault Tree Layer ...22
IV.1. Description ..22
IV.2. XML Representation...25
IV.3. Extra Logical Constructs and Recommendations ...29

IV.3.1. Model-Data and Components ..29
IV.3.2. Solving Name Conflicts: Public versus Private Elements ...30
IV.3.3. Inherited attributes ...31
IV.3.4. Recommendations ..32

V. Stochastic Layer ..33
V.1. Description ...33
V.2. Operations...35

V.2.1. Numerical Operation ...35
V.2.2. Boolean Operations ...38
V.2.3. Conditional Operations..38

V.3. Built-Ins ..39
V.3.1. Description ..39
V.3.2. XML Representation ...42

V.4. Primitive to Generate Random Deviates ..43
V.4.1. Description ..43
V.4.2. XML Representation ...46

V.5. Directives to Test the Status of Initiating and Functional Events47
V.5.1. Description ..47
V.5.2. XLM Representation ...48

VI. Meta-Logical Layer..49
VI.1. Common Cause Groups ..49

VI.1.1. Description ...49

Open-PSA Open-PSA Model Exchange Format - 4

Draft n°2.0d – 12/05/2008

VI.1.2. XML representation ...50
VI.2. Delete Terms, Recovery Rules and Exchange Events ..52

VI.2.1. Description ...52
VI.2.2. All Extra-Logical Constructs in One: the Notion of Substitution..............................53
VI.2.3. XML Representation..54

VII. Event Tree Layer ..56
VII.1. Preliminary Discussion ..56
VII.2. Structure of Event Trees ..57

VII.2.1. Description..57
VII.2.2. XML Representation...59

VII.3. Instructions...61
VII.3.1. Description..61
VII.3.2. XML Representation...62

VIII. Organization of a Model..66
VIII.1. Additional Constructs...66

VIII.1.1. Consequences and Consequence Groups ..66
VIII.1.2. Missions, Phases..66

VIII.2. Splitting the Model into Several Files ..67
VIII.3. Organization of a Model...68

IX. Report Layer...70
IX.1. Preliminary Discussion ...70
IX.2. Information about calculations..70
IX.3. Format of Results ..71

IX.3.1. Minimal Cutsets ...71
IX.3.2. Statistical measures ..72
IX.3.3. Curves ..72

X. References ...74
Appendix A. Extended Backus-Naur Form ...75
Appendix B. DTD of the Open-PSA Model Exchange Format ...77
Appendix C. Backus-Naur form for the Open-PSA Model Exchange Format87

C.1. Models ..87
C.2. Consequence, Consequence Groups, Alignments ..88
C.3. Initiating events, Initiating event Groups ...88
C.4. Event Trees ...89
C.5. Instructions, Rules ..90
C.6. CCF-groups, Substitutions..91
C.7. Fault Trees, Components ..92
C.8. Formulae ...93
C.9. Basic Events, Parameters..93
C.10. Expressions ...94

Open-PSA Open-PSA Model Exchange Format - 5

Draft n°2.0d – 12/05/2008

List of Figures

Figure II-1. Architecture of the Model Exchange Format..13
Figure III-1. The main elements of a model, their layers and their dependencies19
Figure IV-1. A Fault Tree...23
Figure IV-2. Backus-Naur presentation of constructs of Fault Trees ..24
Figure IV-3. Backus-Naur form of XML description of Fault Trees...26
Figure IV-4. Backus-Naur grammar of the XML representation of Boolean formulae.................27
Figure IV-5. XML description of Fault Tree pictured Figure IV-1. ..28
Figure IV-6. A Fault Tree with Three Components...29
Figure IV-7. XML Representation for the Fault Tree pictured Figure IV-630
Figure V-1. Backus-Naur form for the constructs of the stochastic layer (sketch)........................34
Figure V-2. Backus-Naur grammar for XML representation of expressions (main)35
Figure V-3. Backus-Naur grammar for XML representation of numerical operations..................37
Figure V-4. Backus-Naur grammar for XML representation of Boolean operations38
Figure V-5. Backus-Naur grammar for XML representation of conditional operations................39
Figure V-6. Meaning of parameters τ, θ and π of the “periodic-test” built-in.41
Figure V-7. Multi-phase Markov graph for the “periodic-test” built-in.41
Figure V-8. Backus-Naur grammar for XML representation of Built-ins42
Figure V-9. Backus-Naur grammar for XML representation of random deviates46
Figure V-10. Backus-Naur grammar for XML representation of directives to test the status of
initiating and functional events ..48
Figure VI-1. Backus-Naur form for the XML representation of CCF-groups51
Figure VI-2. Backus-Naur form for the XML representation of exclusive-groups54
Figure VII-1. A Small Event Tree..56
Figure VII-2. Structure of an Event Tree ...58
Figure VII-3. Backus-Naur form of the XML representation of initiating events59
Figure VII-4. Backus-Naur form of the XML representation of event trees and sequences60
Figure VII-5. XML representation for the structure of the Event Tree pictured Figure VII-261
Figure VII-6. Backus-Naur form for the XML representation of instructions..............................63
Figure VII-7. XML representation of the branches of the event tree pictured Figure VII-264
Figure VIII-1. Backus-Naur form of the XML representation of consequence groups66
Figure VIII-2. Backus-Naur form of the XML representation of Missions and Phases67
Figure VIII-3. Containers and the constructs they can define..68
Figure VIII-4. Backus-Naur form for the XML representation of containers................................69
Figure IX-1. Backus-Naur form for the XML representation of sums-of-products.......................71
Figure IX-2. Backus-Naur form for the XML representation of statistical measures...................72
Figure IX-3. Backus-Naur for the XML representation of curves ...73

Open-PSA Open-PSA Model Exchange Format - 6

Draft n°2.0d – 12/05/2008

List of Tables

Table IV-1. Semantics of Boolean connectives ...24
Table V-1. Numerical Operations, their number of arguments and their semantics......................36
Table V-2. Boolean operators, their number of arguments and their semantics38
Table V-3. Built-ins, their number of arguments and their semantics ...42
Table V-4. Primitive to generate random deviates, their number of arguments and their
semantics ..43
Table V-5. Directives to test the status of initiating and functional events....................................48
Table VII-1. States of Functional Events for the different paths of the Event Tree of Figure
VII-2 ...59

Open-PSA Open-PSA Model Exchange Format - 7

Draft n°2.0d – 12/05/2008

Contributors

This document presents the “Open-PSA Model Exchange Format”. The redaction of this
representation format is a shared effort. The following persons contributed to various extents
to the current version of the document: Becker Guenter, Čepin Marko, Contini Sergio,
Ducamp François, Epstein Steven, Herrero Santos Roberto, Hibti Mohamed, Kampramanis
Ioanis, Klügel Jens, Meléndez Asensio Enrique, Perez Mulas Arturo, Nusbaumer Olivier,
Quatrain Richard, Rauzy Antoine, Rauzy Pablo, Reinhart Mark and Sörman Johan.

Open-PSA Open-PSA Model Exchange Format - 8

Draft n°2.0d – 12/05/2008

I. THE OPEN-PSA INITIATIVE

The Open Initiative for Next Generation of
 Probabilistic Safety Assessment

As we enter a time in which safety and reliability have come to the attention of the public,
especially in the face of climate change and a nuclear renaissance, efforts are being made in
the direction of the “next generation” of Probabilistic Safety Assessment with regards to
software and methods. These new initiatives hope to present a more informative view of the
actual models of systems, components, and their interactions, which helps decision makers to
go a step forward with their decisions.

The Open Initiative for Next Generation PSA provides an open and transparent public forum
to disseminate information, independently review new ideas, and spread the word. We want to
emphasize an openness which leads to methods and software which have better quality, better
understanding, more flexibility, encourage peer review, and allow the transportability of
models and methods.

We hope to bring to the international PSA community the benefits of an open initiative, and to
bring together the different groups who engage in large scale PSA, in a non-competitive and
commonly shared organization.

Two of our most important activities will be as a standards body and clearing house for
methodologies for the good of PSA. In this way, researchers, practitioners, corporations, and
regulators can work together in open cooperation.

Over the last 5 years, some non classical calculation techniques and modeling methods in
nuclear PSA have been extensively studied. The concern of these investigations has been to
end the use of (1) numerical approximations for which we do not know the error factors, (2)
modeling methods which leave out perhaps critical elements of the actual plant, and (3) lack
of good man-machine and organizational modeling techniques. From all these investigations,
some alarming issues related to large, safety critical PSA models have been raised, which we
feel need to be addressed before new calculation engines or next generation user interfaces are
put into place:

– Quality assurance of calculations;
– Un-founded reliance on numerical approximations and truncation;
– Portability of the models between different software;

Open-PSA Open-PSA Model Exchange Format - 9

Draft n°2.0d – 12/05/2008

– Clarity of the models;
– Completeness of the models;
– Modeling of human actions;
– Better visualization of PSA results;
– Difficulty of different software working with the same PSA model;
– Lack of data and software backward and forward compatibility;
– No universal format for industry data.

New calculation engines and user interfaces and a computer representation for large, safety
critical PSA models, which is independent of PSA software, represent a step forward in
addressing the above issues.

As our first activity, we have created a working group to begin the creation of a model
exchange format for PSA models. Other working groups in the other aforementioned areas are
expected to follow the success of the first one.

We believe that each of you who are reading this manifesto have similar ideas. Let us enter
into an open forum together, and work together to know the limits of our methods, to push
those limits, and to expand our understanding.

Open-PSA Open-PSA Model Exchange Format - 10

Draft n°2.0d – 12/05/2008

II. INTRODUCTION

II.1. Why Do We Need a Model Exchange Format?
Over the years, research efforts have been made in the direction of “next generation” PSA
software and “declarative modeling”, which try to present a more informative view of the
actual systems, components, and interactions which the model represents. The concern of
these studies has been to end the use of approximations: numerical approximations for which
we do not know the error factors, and modeling approximations which leave out perhaps
critical elements of the actual system under study. From all these investigations, some issues
related to large nuclear PSA models have been raised, which need to be addressed before to
put new calculation engines or next generation user interfaces into place. To address these
issues enumerated below, an “Model Exchange Format”, a representation which is
independent of all PSA software, must be in place. In this perspective software would retain
their own internal representation for a model; but each software would also be able to share
models and industry data by means of the Model Exchange Format.

Quality assurance of calculations: at the moment, a model built with one software, cannot be
simply quantified with another software, and visa versa; there are too many software
dependent features used by modelers to make inter-calculation comparisons a one-step
process. The Model Exchange Format will allow models to be quantified by several
calculation engines; therefore quality assuring results in a strong way.

Over reliance on numerical approximations and truncation: while this cannot be solved
directly by the Model Exchange Format, as new calculation engines are completed, the Model
Exchange Format will allow new engines to be snapped into new (or existing) user interfaces
without changing the model or user interface software.

Portability of the models between different software: at the moment, models are essentially
non-portable between calculation engines, as pointed out above. The Model Exchange
Format allow complete, whole models to be shared right now between software; the bonus
will be on each software to correctly interpret the model representation.

Clarity of the models: For one who examined a number of large nuclear PRA models, it is
obvious that just looking at the basic events, gates and fault trees/event trees is of little help in
understanding the “where”, “why”, and “how” of model elements: common cause failures,
initiating events, sequence information, alignment information, systems and trains, flags, logic
of recovery rules, or the dreaded “delete terms”. The Model Exchange Format employs what
is becoming known as structured modeling. Structured Modeling takes its name from the
structured programming movement in the 1970s. Before that time, variables, arrays, and other
data structures, were used with no definitions and explanations. Structured programming
techniques forced programmers to “declare variables” at the beginning of a program by name
and also by the type of variable it was: an integer, a real number, and so on. In this way the
meaning of the program became clearer, and calculation speeds were increased. Structured
Modeling, as applied to PRA models and software, has the same goal of making the meaning
of the model more clear, more transparent, and to improve the speed and accuracy of the
calculation. The user interface to create such a model is not of concern here. The concern is

Open-PSA Open-PSA Model Exchange Format - 11

Draft n°2.0d – 12/05/2008

to discover the distinct model elements which are needed to quantify and clarify large PRA
models.

Completeness of the models: without clarity, there can be no knowledge of the completeness
of the model, since their very size and complexity strains the brain. The Model Exchange
Format will create more survey-able models.

Difficulty of different software working with the same PSA model: as more risk applications
are being requested (seismic, fire, balance of plant assessments, risk monitors, release
calculations), difficulties are arising because each risk application and major PSA software
have different internal data formats. The Model Exchange Format will be able easily to share
model data between applications and specialized software would be available for all models.

Lack of data and software backward and forward compatibility: again, as more diverse
software need to interact, such as safety monitors, calculation engines, and fault tree editors,
the need to have data and programs separate becomes of high importance. The Model
Exchange Format solves this problem by allowing programs to change without the need for
the data format to change and for other programs to change their operations.

No universal format for industry data: The Model Exchange Format will be a perfect way to
publish industry data such as common cause, failure rates, incidents, and initiating event
frequencies.

II.2. Requirements for the Model Exchange Format
To be acceptable and widely accepted, the Model Exchange Format for PSA must fulfill a
number of requirements. The following list is an attempt to summarize these requirements.

Soundness: the Model Exchange Format must be unambiguous. The semantics of each
construct must be clearly given, in such way that no two correct implementations of the
Model Exchange Format can differ in their interpretation of models (they may differ however,
at least to a certain extent, in the results they provide if they use different calculation
methods).

Completeness: the Model Exchange Format should cover as much as possible; not only all
aspects of PSA models, but also references to external documentations and format of the
results. These issues have to be covered by the Model Exchange Format in order to make
models actually portable and to be able to cross check calculations.

Clarity: the Model Exchange Format should be self-documenting to a large extent. The
constructs of the Model Exchange Format should reflect what the designer of the model has in
mind. Low level constructs would help in making the format universal (any model can be
eventually represented by means of a Fortran or C program, not to speak of a Turing machine
or a Church lambda term). But constructs which are at too low a level would be of little help,
and even counter-productive, for model review.

Generality: it should be possible to cast all of the existing models into the Model Exchange
Format without rewriting them from scratch. The translation of existing models should be
automated, at least to a large extent. Moreover, any existing tool should be able to use the

Open-PSA Open-PSA Model Exchange Format - 12

Draft n°2.0d – 12/05/2008

Model Exchange Format as its representation language. Indeed, most of the tools implement
only a subpart of the Model Exchange Format but the Model Exchange Format should be a
superset of the underlying formalisms of all existing tools.

Extensibility: the Model Exchange Format should not restrict developers if they wish to
introduce interesting new features in their tools. This means that it should be easy to
introduce new constructs into the Model Exchange Format, even if these constructs are not
recognized by all of the tools. On the other hand, these new constructs should be clearly
identified; their semantics should be clear and public in such way that any other developer can
embed the feature in his own tool.

II.3. Choice of XML
To create the Model Exchange Format, we must make formal definitions for representing
existing PRA models and define a syntax to write them. The Model Exchange Format is
defined as a XML document type. XML is widely used on the internet as a common way for
programs to share data. It is well structured and makes it possible to give explicit name to
each construct. XML is therefore well suited for structured modeling. By giving the elements
of a model a formal designation (“this is an initiating event”, “this is a basic event”, and so
on), quantification results and understanding of the model can be improved.
XML presents another major advantage for tool developers: many development teams have
more or less already designed its own XML parser and many such parsers are anyway freely
available on internet. Therefore the choice of a XML based syntax discharges programmers
of PSA tools of the tedious task to design parsers and to perform syntactic checks. Moreover,
due to their tree-like structure, it is easy to ignore parts of a XML description that are not
relevant for a particular purpose. Therefore tools which do not implement the whole Model
Exchange Format can easily pick up what they are able to deal with.

II.4. A Four-Plus-One Layers Architecture
The Model Exchange Format relies on a four-plus-one layers architecture, as pictured Figure
 II-1. Each layer corresponds to a specific class of objects/mathematical constructs.

Open-PSA Open-PSA Model Exchange Format - 13

Draft n°2.0d – 12/05/2008

Report Layer

traces of model rewritings and calculations, results...

Event Tree Layer
event trees, initiators, consequences, end-states...

Meta-Logical Layer
common cause groups, delete terms, recovery rules...

Fault Tree Layer
gates, basic events, house events...

Stochastic Layer
probability distributions, parameters, flags...

Figure II-1. Architecture of the Model Exchange Format

– The first, or stochastic, layer is populated with all stochastic aspects of models:
probability distributions for the failure rates of basic events, parameters of these
distributions and distributions of these parameters, flags...

– The second, or fault tree layer, is populated with logical components of fault trees
(gates, basic events, house events). This layer is the core of PSA models. The two
first layers can be used in isolation. Some existing tools implement them only.

– The third, or meta-logical, layer is populated constructs like common cause groups,
delete terms, recovery rules that are used to give flavors to fault trees...

– The fourth, or event tree, layer is populated with event trees, initiating events and
consequences. The Model Exchange Format sees event trees as (graphical) programs.
The execution of such a program produces a set of sequences, i.e. a set (a disjunction)
of Boolean formulae. Probability distributions are also collected while walking the
event tree.

– The fifth, or report layer, is populated with constructs to store results of calculations.
This includes constructs to describe calculations (version of the model, used engine,
used cutoffs, targeted group of consequences, calculated quantities...) and well as
minimal cutsets and other results.

This five layers architecture helps to understand what the different elements of a model are
and what their respective roles are. In a word, it is the backbone of the Model Exchange

Open-PSA Open-PSA Model Exchange Format - 14

Draft n°2.0d – 12/05/2008

Format. It should be clear however that any model will contain elements of the first fourth
levels and that these elements may be not arranged by levels. For instance, a fault tree
description will probably contain probability distributions of basic events as well as common
cause groups. Again, the five layers architecture intends to differentiate elements according to
their meanings and operational behaviors.

II.5. Formalism
Throughout this document, we shall present a number of syntactic constructions such as
Boolean formulae, probability distributions, and so on. These constructions will be eventually
represented by means of XML terms. XML is however a bit too verbose to make clear the
underlying mathematical nature of objects at hand. Therefore we shall use (in a rather loose
way) the Extended Backus-Naur form to define constructs. A presentation of the Extended
Backus-Naur form can be found in Appendix A.
There are several formal ways to describe a XML grammar. The most popular one is
probably the XML Document Type Definition (DTD). A DTD is associated with an XML
document via a Document Type Declaration, which is a tag that appears near the start of the
XML document. The declaration establishes that the document is an instance of the type
defined by the referenced DTD. DTD are a good verification tools, but hard to interpret by a
human. Therefore, we shall present the grammar of the Model Exchange Format mainly by
means of examples and semi-formal descriptions with the Extended Backus Naur form. A
formal DTD for the whole Model Exchange Format is given Appendix B. A semi-formal
Backus-Naur form for the Model Exchange Format is given Appendix C.

It is worth noting that the XML descriptions we are giving here can be extended in any way to
fulfill the needs of a particular tool. In particular, comments and pointers to documentation
should be added here and there to the model.

II.6. Organization of the document
The remainder of this document is organized into six chapters corresponding to an
introductive overview, one chapter per layer of the architecture of the Model Exchange
Format and one additional chapter for models as a whole.

– Chapter III gives an overview of main elements of a model and shows how these
elements are organized. It discusses how to split a description into several files, how
to solve naming conflicts...

– Chapter IV presents the fault tree layer. The fault tree layer is not the lowest one in
the hierarchy. However, fault trees are the most basic and the central concept of PSA
models. For this reason, we put it in front.

– Chapter V present the stochastic layer, i.e. all the mechanisms to associate probability
distributions to basic events.

– Chapter VI presents the meta-logical layer.
– Chapter VII presents the event tree layer.
– Chapter VIII discusses the organization of models.
– Finally, chapter presents the report/results layer, i.e. the normalized format for results

of assessment of PSA models.
Three appendices give additional details or summarize the contents of these six chapters.

Open-PSA Open-PSA Model Exchange Format - 15

Draft n°2.0d – 12/05/2008

– Appendix A presents the Backus-Naur form we use throughout this document to
describe both the mathematical structure of the constructs and their XML
representation.

– Appendix B gives the Document Type Definition (DTD) of the full Model Exchange
Format.

– Appendix C gives the Backus-Naur form of the Model Exchange Format.

Open-PSA Open-PSA Model Exchange Format - 16

Draft n°2.0d – 12/05/2008

III. ANATOMY OF THE MODEL EXCHANGE
FORMAT
This chapter presents the anatomy of the Model Exchange Format, i.e. the main components
of a model and their relationships. We assume the reader is familiar with the fault tree/event
tree methodology.

III.1. Elements of a model

III.1.1. Variables, Terms and Containers
Elements of a model are, as expected, components of fault trees/event trees, namely basic
events, gates, house events, probability distributions, initiating events, safety systems,
consequences… Conceptually, it is convenient to arrange most of these elements into one of
the three categories: terms, variables and containers.

Variables: Variables are named elements. Gates, basic events, house events, stochastic
parameters, functional events, initiating events and consequences are all variables. A variable
is always defined, i.e. associated with a term.

Terms: Terms are built over variables, constants and operators. For instance, the Boolean
formula “primary-motor-failure or no-current-to-motor” is a term built over the basic event
“primary-motor-failure”, the gate “no-current-to-motor” and the Boolean operator “or”.
Similarly, the probability distribution “1-exp(-lambda*t)” is a term built over the numerical
constant “1”, the failure rate “lambda” the time “t”, and the three arithmetic operators “-“,
“exp” and “*” (“lambda” and “t” are variables). Note that variables are terms

Containers: According to our terminology, a model is nothing but a set of definitions of
variables. Since a brute list of such definitions would lack of structure, the Model Exchange
Format makes it possible to group them into containers. Containers have names and can be
themselves grouped into higher level containers. For instance, a fault tree is a container for
definitions of gates, house-events, basic events and parameters of probability distributions.
Similarly, an event tree is a container for definitions of initiating events, functional events,
sequences…

We are now ready to list the main elements of a model. The exact content and role of these
different elements will be detailed in the subsequent chapters.

III.1.2. Stochastic Layer
Stochastic variables and terms: Stochastic expressions are terms that are used to define
probability distributions (associated with basic events). Stochastic variables are called
parameters. For instance, “1-exp(-lambda*t)” is a stochastic expression built over the two
parameters “lambda” and “t”.

Open-PSA Open-PSA Model Exchange Format - 17

Draft n°2.0d – 12/05/2008

From a programming viewpoint, it is convenient to group definitions of parameters into
(stochastic) containers. The stochastic layer is populated with stochastic parameters,
expressions and containers.

III.1.3. Fault Tree Layer
Boolean formulae, Basic Events, House Events and Gates: Boolean formulae, or formulae for
short, are terms built over the usual set of constants (true, false), connectives (and, or, not…)
and Boolean variables, i.e. Basic Events, Gates and House Events. Boolean variables are
called events, for that's what they represent in the sense of the probability theory. Basic
events are associated with probability distributions, i.e. with (stochastic) expressions. Gates
are defined as Boolean formulae. House events are special gates that are defined as Boolean
constants only.

Fault Trees: According to what precedes, a fault tree is container for definitions of parameters,
basic events, house events and gates.

The fault tree layer is populated with all elements we have seen so far.

III.1.4. Meta-Logical Layer
The meta-logical layer contains extra-logical constructs in addition to fault trees. These extra-
logical constructs are used to handle issues that are not easy to handle in a purely declarative
and logical way.

Common Cause Groups: Common cause groups are sets of basic events that are not
statistically independent. Several models can be used to interpret common cause groups. All
these models consist in splitting each event of the group into a disjunction of independent
basic events.

Substitutions: delete terms, exchange events, and recovery rules are global and extra-logical
constraints that are used to describe situations such as physical impossibilities, technical
specifications, or to modify the probability of a scenario according to some physical rules or
judgments about human actions. In the Model Exchange Format, these extra-logical
constructs are all modeled by means of the generic notion of substitution.

III.1.5. Event Tree Layer
As we shall see, event trees must be seen as a (semi-)graphical language to describe and to
combine sequences. Elements of this language are the following.

Event Trees: Event Trees define scenarios from an Initiating Event (or an Initiating Event
Group) to different end-states. In the Model Exchange Format, end-states are called
Sequences. The same event tree can be used for different Initiating Events. Along the
scenarios, “flavored” copies of fault trees are collected and/or values are computed. Flavors
are obtained by changing values of house events and parameters while walking along the tree.
Event Trees are containers according to our terminology. They contain definition of
functional events and states.

Initiating Events, Initiating Event Groups: Initiating Events describe the starting point of an
accidental sequence. They are always associated with an event tree, although they are in
general declared outside of this event tree. The Model Exchange Format makes it possible to

Open-PSA Open-PSA Model Exchange Format - 18

Draft n°2.0d – 12/05/2008

chain event trees. Therefore, the end-state of a sequence of an event tree may be the initiating
event of another event tree. Initiating Events are variables, according to our terminology.
Initiating event groups are sets of initiating events. Despite of their set nature, initiative
events are also variables, because an initiating event group may contain another one (the
initiating terms are set operations).

Functional Events: Functional Events describe actions that are taken to prevent an accident or
to mitigate its consequences (usually by means of a fault tree). Depending on the result of
such an action, the functional event may be in different, e.g. “success” or “failure”.
Functional Events label the columns the graphical representation of Event Trees.

Sequences, Branches: Sequences are end-states of branches of event trees. Branches are
named intermediate states.

Instructions, Rules: Instructions are used to describe the different paths of an event tree, to set
the states of functional events, to give flavors of fault trees that are collected, and to
communicate with the calculation engine. Rules are (named) groups of Instructions. They
generalize split-fractions of the event tree linking approach, and boundary condition sets of
the fault tree linking approach.

Consequences, Consequence groups: Consequences are couples made of an initiating event
and a sequence (an event tree end-state). Consequences are named and are defined. They are
variables according to our terminology. Like Initiating Events, Consequences can be grouped
to study a particular type of accident. Consequence Groups are also variables (the
consequence terms are set operations).

Missions, Phases: In some cases, the mission of the system is split into different phase. The
Model Exchange Format provides constructs to reflect this situation.

III.2. Structure of a model

III.2.1. Relationships between elements of a model
The elements of a model, their layer and their dependencies are pictured are pictured Figure
 III-1. This schema illustrates the description given in the previous section. Term categories
are represented by rectangles. Variables categories are represented by rounded rectangles. A
variable category is always included in a term category (for variables are terms). The three
container categories, namely models, event trees and fault trees are represented by dashed
rectangles. Dependencies among categories are represented by arrows.

Open-PSA Open-PSA Model Exchange Format - 19

Draft n°2.0d – 12/05/2008

initiating-events,
initiating-event-groups

instructions

sequences,
branches,
rules

consequences,
consequence-groups

func tional-events

CCF-group

gates,
house-events,
basic -events

Boolean formulae

stochastic expressions

parameters

fault- trees

event-trees

stochastic
layer

fault tree
layer

event trees
layer

substitutions
meta-logical
layer

missions,
phases

Figure III-1. The main elements of a model, their layers and their dependencies

Open-PSA Open-PSA Model Exchange Format - 20

Draft n°2.0d – 12/05/2008

III.2.2. Giving more structure to a model
A model (like a fault tree or an event tree) is a list of declarations. The Model Exchange
Format does not require structuring these declarations: they can be given in any order,
provided that the type of an object can be decided prior to any use of this object. Fault trees
and event trees provide a first mean to organize models. This may be not sufficient,
especially when models are big. In order to structure models, the Model Exchange Format
provides the analyst with two mechanisms.

First, declarations can be grouped together by means of user defined containers. Such a
container is just a XML tag. It has no semantics for the model. It just makes it possible to
delimit a set of objects of the model that are physically or functionally related (for instance,
the different failure modes of a physical component).

Second, the Model Exchange Format makes it possible to associate user defined attributes to
the main components. For instance, we may define an attribute “zone” with a value “room33”
for all constructs describing components located in the room 33. This indirect mean is very
powerful. It can be used extensively to perform calculations or changes on a particular subset
of elements.

III.2.3. Containers as name spaces
Once declared, elements are visible and accessible everywhere in the model. This visibility
means in turn that an object of a given type, e.g. parameter or event, is unique. No two
distinct objects of the same type can have the same name. This constraint seems to be fine
and coherent. However, some tools do not obey the rule: two gates of two different fault trees
and representing two different functions may have the same name. It is not possible to reject
this possibility (as a bad modeling practice), because when models are large and several
persons are working in collaboration, such name conflicts are virtually impossible to avoid.

To solve this problem, the Model Exchange Format considers containers, i.e. not only fault
trees and event trees but also user defined containers, as name spaces. By default, objects
defined in a container are global. But it is possible to declare them as local to the container as
well. In that case, they are not visible outside the container, and tools are in charge of solving
potential name conflicts.

III.2.4. Definitions, Labels and Attributes
Here follows some additional useful elements about the Model Exchange Format.

Definitions versus references: For the sake of the clarity (and for XML specific reasons), it is
important to distinguish the declaration/definition of an element from references to that
element. For instance, we have to distinguish the definition of the gate “motor-fails-to-start”
(as the Boolean formula “primary-motor-failure or no-current-to-motor”), from references to
that gate into definitions of other gates.
In the Model Exchange Format, the definition of a variable or a container, for instance a gate,
is in the following form.

<define-gate name="motor-fails-to-start" ...>

 ...

Open-PSA Open-PSA Model Exchange Format - 21

Draft n°2.0d – 12/05/2008

</define-gate>

References to that gate are in the following form.

 ...

 <gate name="motor-fails-to-start" />

 ...

So, there are two tags for each element (variable or container) of the Model Exchange Format:
the tag “define-element” to define this element and the tag “element” to refer this element.
Note that the attribute “name” is systematically used to name elements.

Labels: It is often convenient to add a comment to the definition of an object. The Model
Exchange Format defines a special tag “label” to do so. The tag label can contain any text. It
must be inserted as the first child of the definition of the object. E.g.

<define-gate name="motor-fails-to-start" ...>

 <label>

 Warning: secondary motor failures are not taken into account here.

 </label>

 ...

</define-gate>

Attributes: Attributes can be associated with each element (variable or container) of the Model
Exchange Format. An attribute is a pair (name, value), where both name and value are
normally short strings. Values are usually scalars, i.e. they are not interpreted. In order to
allow tools to interpret values, a third field “type” can be optionally added to attributes. The
tags “attributes” and “attribute” are used to set attributes. The former is mandatory, even
when only one attribute is defined. It must be inserted as the first child of the definition of the
object, or just after the tag label, if any. E.g.

<define-gate name="motor-fails-to-start" ...>

 <label>

 Warning: secondary motor failures are not taken into account here.

 </label>

 <attributes>

 <attribute name="zone" value="room33" />

 ...

 </attributes>

 ...

</define-gate>

The Backus-Naur form for the XML representation of labels and attributes is as follows.

label := <label> any text </label>

attributes ::= <attributes> attribute+ </attributes>

attribute ::= <attribute name="identifier" value="string" [type="string"]

/>

Open-PSA Open-PSA Model Exchange Format - 22

Draft n°2.0d – 12/05/2008

IV. FAULT TREE LAYER
The Fault Tree layer is populated with logical components of Fault Trees. It includes the
stochastic layer, which contains itself the probabilistic data. The stochastic layer will be
presented in the next section.

IV.1. Description
Constituents of fault trees are Boolean variables (gates, basic events, and house events),
Boolean constants (true and false) and connectives (and, or, k-out-of-n, not ...). Despite of
their name, fault trees have in general a directed acyclic graph structure (and not a tree-like
structure), because variables can be referenced more than once. The simplest way to describe
a fault tree is to represent it as a set of equations in the form “variable = Boolean-formula”.
Variables that show up as left hand side of an equation are gates. Variables that show up only
in right hand side formulae are basic events. Finally, variables that show up only as left hand
side of an equation are top events. Such a representation imposes two additional conditions:
first, the set of equations must contain no loop, i.e. that the Boolean formula at the right hand
side of an equation must not depend, even indirectly (recursively), on the variable at the left
hand side. Second, a variable must not show up more than once at the left hand side of an
equation, i.e. gates must be uniquely defined. Figure IV-1 shows a Fault Tree. The
corresponding set of equations is as follows.

 TOP = G1 or G2
 G1 = H1 and G3 and G4
 G2 = not H1 and BE2 and G4
 G3 = BE1 or BE3
 G4 = BE3 or BE4

On the figure, basic events are surrounded with a circle. Basic events are in general
associated with a probability distribution (see Chapter V).

House events (surrounded by a house shape frame on the figure) are represented as variables
but are actually constants: when the tree is evaluated house events are always interpreted by
their value, which is either true or false. By default, house events take the value false.
Negated house events (gates, basic events) are represented by adding a small circle over their
symbol.

A semi-formal description of constructs of Fault Trees is given under the Backus-Naur form
Figure IV-2. This description allows loops (in the sense defined above), multiple definitions
and trees with multiple top events. The presence of loops must be detected by a specific
check procedure. If a variable or a parameter is declared more than once, tools should emit a
warning and consider only the last definition as the good one (the previous ones are just
ignored). In some circumstances, it is of interest to define several fault trees at once by means
of a unique set of declarations. Therefore the presence of multiple top events should not be
prevented. We shall see what parameters and expressions are in the next chapter.

Open-PSA Open-PSA Model Exchange Format - 23

Draft n°2.0d – 12/05/2008

TOP

G1 G2

E1

BE2

E3

G3H1

G4

E4

H1

Figure IV-1. A Fault Tree

The semantics of connectives is given Table IV-1. Note that connectives “and”, “or”, “xor”,
“iff”, “nand” and “nor” are associative. Therefore it suffices to give their semantics when
they take two arguments, i.e. two Boolean formulae F and G.

Open-PSA Open-PSA Model Exchange Format - 24

Draft n°2.0d – 12/05/2008

fault-tree-definition ::=

 fault-tree identifier (event-definition | parameter-definition)*

event-definition ::=

 gate = formula

 | basic-event = expression

 | house-event = Boolean-constant

formula ::=

 event

 | Boolean-constant

 | and formula+

 | or formula+

 | not formula

 | xor formula+

 | iff formula+

 | nand formula+

 | nor formula+

 | atleast integer formula+

 | cardinality integer integer formula+

 | imply formula formula

event ::= gate | basic-event | house-event

Boolean-constant ::= constant (true | false)

Figure IV-2. Backus-Naur presentation of constructs of Fault Trees

Connective Semantics

and F and G is true if both F and G are true, and false otherwise
or F or G is true if either F or G is true, and false otherwise
not not F is true if its F is false, and false otherwise
xor F xor G is equivalent to (F and not G) or (not F and G)
iff F iff G is equivalent to (F and G) or (not F and not G)
nand F nand G is equivalent to not (F and G)
nor F nor G is equivalent to not (F or G)
atleast true if at least k out of the Boolean formulae given as arguments are true, and

false otherwise. This connective is also called k-out-of-n, where k is the integer
and n is the Boolean formulae given in arguments

cardinality true if at least l and at most h of the Boolean formulae given as arguments are
true, and false otherwise. l and h are the two integers (in order) given as
arguments.

imply F implies G is equivalent to not F and G

Table IV-1. Semantics of Boolean connectives

In a second step, it would be of interest to incorporate to the Model Exchange
Format “inhibit” gates, “priority” gates and “triggers” (like in Boolean Driven

Open-PSA Open-PSA Model Exchange Format - 25

Draft n°2.0d – 12/05/2008

Dynamic
Gates

Markov processes). All of these dynamic gates can be interpreted as “and” gates
in a Boolean framework. In more general frameworks (like Markovian
frameworks) they can be interpreted in a different way, and provide mechanisms
to model in an accurate way backup systems, limited amount of resources… The
complexity of the assessment of this kind of model is indeed much higher than
the one of Boolean models (which is already at least NP-hard or #P-hard).

IV.2. XML Representation
The Backus-Naur form for the XML description of fault trees is given Figure IV-3 and Figure
 IV-4.
This description deserves some comments.

– It leaves for now the tags “define-parameter” and “expression” unspecified. We shall
see in the next chapter how these tags are used to define the probability distributions.

– Similarly, the tag “define-component” will be explained in the next section.
– Although the Model Exchange Format adopts the declarative modeling paradigm, it is

often convenient to use variables in formulae before declaring them. The Model
Exchange Format therefore refers to variables with the generic term “event”, possibly
without a “type” attribute.

– By default, the value of a house is event is “false”. So it is not necessary to associate a
value with a house event when declaring it. We shall see section VII.3 how to change
the value of a house event.

– Although events are typed (they are either gates, house events or basic events), two
different events cannot have the same name (within the same name space), even if they
are of different types. This point will be explained in the next section.

Open-PSA Open-PSA Model Exchange Format - 26

Draft n°2.0d – 12/05/2008

fault-tree-definition ::=

 <define-fault-tree name="identifier" >

 [label]

 [attributes]

 (event-definition | parameter-definition |component-definition)*

 </define-fault-tree >

component-definition ::=

 <define-component name="identifier" [role="private|public"] >

 [label]

 [attributes]

 (event-definition | parameter-definition | component-definition)*

 </define-component>

model-data ::=

 <model-data>

 (house-event-definition | basic-event-definition | parameter-definition

)*

 </model-data>

event-definition ::=

 gate-definition

 | house-event-definition

 | basic-event-definition

gate-definition ::=

 <define-gate name="identifier" [role="private|public"] >

 [label]

 [attributes]

 formula

 </define-gate>

house-event-definition ::=

 <define-house-event name="identifier" [role="private|public"] >

 [label]

 [attributes]

 [Boolean-constant]

 </define-house-event>

basic-event-definition ::=

 <define-basic-event name="identifier" [role="private|public"] >

 [label]

 [attributes]

 [expression]

 </declare>

Figure IV-3. Backus-Naur form of XML description of Fault Trees

Open-PSA Open-PSA Model Exchange Format - 27

Draft n°2.0d – 12/05/2008

formula ::=

 event

 | Boolean-constant

 | <and> formula+ </and>

 | <or> formula+ </or>

 | <not> formula </not>

 | <xor> formula+ </xor>

 | <iff> formula+ </iff>

 | <nand> formula+ </nand>

 | <nor> formula+ </nor>

 | <atleast min="integer" > formula+ </atleast>

 | <cardinality min="integer" max="integer" > formula+ </cardinality>

 | <imply> formula formula </imply>

event ::=

 <event name="identifier" [type="event-type"] />

 | <gate name="identifier" />

 | <house-event name="identifier" />

 | <basic-event name="identifier" />

event-type ::= gate | basic-event | house-event

Boolean-constant ::= <constant value="Boolean-value" />

Boolean-value ::= true | false

Figure IV-4. Backus-Naur grammar of the XML representation of Boolean formulae.

The attribute “role” is used to declare whether an element is public or private, i.e. whether it
can be referred by its name everywhere in the model or only within its inner most container.
This point will be further explained in the next section. This attribute is optional for by default
all elements are public.

The fault tree pictured Figure IV-1 is described Figure IV-5. In this representation, the house
event “h1” has by default the value “true”. Basic events are not declared for it is not
necessary, so no probability distributions they are not associated with a probability
distribution.

Open-PSA Open-PSA Model Exchange Format - 28

Draft n°2.0d – 12/05/2008

<?xml version="1.0" ?>

<!DOCTYPE opsa-mef>

<opsa-mef>

 <define-fault-tree name="FT1" >

 <define-gate name="top">

 <or>

 <gate name="g1" />

 <gate name="g2" />

 </or>

 </define-gate>

 <define-gate name="g1">

 <and>

 <house-event name="h1" />

 <gate name="g3"/>

 <gate name="g4"/>

 </and>

 </define-gate>

 <define-gate name="g2">

 <and>

 <not>

 <house-event name="h1" />

 </not>

 <basic-event name="e2" />

 <gate name="g4" />

 </and>

 </define-gate>

 <define-gate name="g3">

 <or>

 <basic-event name="e1" />

 <basic-event name="e3" />

 </or>

 </define-gate>

 <define-gate name="g4">

 <or>

 <basic-event name="e3" />

 <basic-event name="e4" />

 </or>

 </define-gate>

 <define-house-event name="h1" >

 <constant value="true" />

 </define-house-event>

 </define-fault-tree>

<opsa-mef>

Figure IV-5. XML description of Fault Tree pictured Figure IV-1.

Open-PSA Open-PSA Model Exchange Format - 29

Draft n°2.0d – 12/05/2008

IV.3. Extra Logical Constructs and Recommendations

IV.3.1. Model-Data and Components
The Model Exchange Format provides a number of extra-logical constructs to document and
structure models. Labels and attributes are introduced Section III.2.4. They can be associated
with declared element in order to document this element. Fault trees are a first mean to
structure models. A fault tree groups any number of declarations of gates, house events, basic
event and parameters.
It is sometimes convenient to group definitions of house events, basic events and parameters
outside fault trees. The Model Exchange Format provides the container “model-data” to do
so.
The Model Exchange Format makes it possible to group further declarations through the
notion of component. A component is just a container for declarations of events and
parameters. It has a name and may contain other components. The use of components is
illustrated by the following example.

Figure IV-6 shows a fault tree FT with three components A, B and C. The component B is
nested into the component A. The XML representation for this Fault Tree is given Figure
 IV-7. With a little anticipation, we declared basic events. Note that components and fault
trees may also contain definitions of parameters. Note also that the basic event BE1, which is
declared in the component A, is used outside of this component (namely in the sibling
component C).

fault-tree FT

component A

component B

component C

TOP

G1 G2 G3

BE1

BE2 BE3 BE4

Figure IV-6. A Fault Tree with Three Components

Open-PSA Open-PSA Model Exchange Format - 30

Draft n°2.0d – 12/05/2008

<define-fault-tree name="FT">

 <define-gate name="TOP">

 <or>

 <gate name="G1" />

 <gate name="G2" />

 <gate name="G3" />

 </or>

 </define-gate>

 <define-component name="A">

 <define-gate name="G1">

 <and>

 <basic-event name="BE1" />

 <basic-event name="BE2" />

 </and>

 </define-gate>

 <define-gate name="G2">

 <and>

 <basic-event name="BE1" />

 <basic-event name="BE3" />

 </and>

 </define-gate>

 <define-basic-event name="BE1" >

 <float value="1.2e-3" />

 </define-basic-event>

 <define-component name="B">

 <define-basic-event name="BE2" >

 <float value="2.4e-3" />

 </define-basic-event>

 <define-basic-event name="BE3" >

 <float value="5.2e-3" />

 </define-basic-event>

 </define-component>

 </define-component>

 <define-component name="C">

 <define-gate name="G3">

 <and>

 <basic-event name="BE1" />

 <basic-event name="BE4" />

 </and>

 </define-gate>

 <define-basic-event name="BE4" >

 <float value="1.6e-3" />

 </define-basic-event>

 </define-component>

</define-fault-tree>

Figure IV-7. XML Representation for the Fault Tree pictured Figure IV-6

IV.3.2. Solving Name Conflicts: Public versus Private Elements
By default, all of the elements of a model are public: they are visible everywhere in the model
and they can be referred by their name. For instance, the basic event “BE1” of the fault tree
pictured Figure IV-7 can be just referred as “BE1”. This principle is fairly simple. It may
cause however some problem for large models, developed by several persons: it is hard to

Open-PSA Open-PSA Model Exchange Format - 31

Draft n°2.0d – 12/05/2008

prevent the same name to be used twice, especially for what concerns gates (some software
allow actually this possibility).

The Model Exchange Format makes it possible to declare elements of fault trees either as
public or as private (to their inner most container). Unless declared otherwise, an element is
public if its innermost container is public and private otherwise. For instance, if the
component “A” of the fault tree pictured Figure IV-7 is declared as private, then the
component “B” (and its two basic events “BE2” and “BE3”), the gates “G1” and “G2” and the
basic event “BE1” are private by default. There is no difference between public and private
elements except that two private elements of two different containers may have the same
name, while public elements must be uniquely defined.

There is actually three ways to refer an element:

– An element can be referred by its name. This works either if the element is public or if
it is referred inside the container (fault tree or component) in which it is declared. For
instance, if the basic event “BE1” is public, it can be referred as “BE1” anywhere in
the model. If it is private, it can be referred as “BE1” only inside the component “A”.

– An element can be referred by its full path (of containers), whether it is public or
private. The names of containers should be separated with dots. For instance, the
basic event “BE2” can be referred as “FT.A.B.BE2” anywhere in the model.

– Finally, an element can be referred by its local path, whether it is public or private.
For instance, if the gate “G1” can be referred as “FT.A.G1” outside of the fault tree
“FT”, as “A.G1” inside the declaration of “FT”, and finally as “G1” inside the
declaration of the component “A”. If the basic event BE1 is private (for a reason or
another), it should be referred either as “FT.A.BE1” inside the component “C”. In this
case, the definition of the gate “G3” is as follows.

 <define-gate name="G3">

 <and>

 <basic-event name="FT.A.BE1" />

 <basic-event name="BE4" />

 </and>

 </define-gate>

The important point here is that it is possible to name two private elements of two different
containers with the same identifier. For instance, if components “B” and “C” are private, it is
possible to rename the basic-event “BE4” as “BE2”. Outside these two components the two
basic events “B2” must be referred using their (local or global) paths.

IV.3.3. Inherited attributes
Attributes associated with a container (fault tree, event tree or component) are automatically
inherited by all the elements declared in the container. It is indeed possible to change the
value of the attribute at element level.

Open-PSA Open-PSA Model Exchange Format - 32

Draft n°2.0d – 12/05/2008

IV.3.4. Recommendations
Layered Models: In PSA models, fault trees are in general layered, i.e. arguments of
connectives (and, or...) are always either variables or negations of variables. Although there is
no reason to force such a condition, it is recommended to obey it, for the sake of clarity.

Use Portable Identifiers: In the XML description of fault trees, we intentionally did not define
identifiers. In many fault tree tools, identifiers can be any string. It is however strongly
recommended for portability issues to use non problematic identifiers, like those of
programming languages, and to add a description of elements as a comment. This means not
using lexical entities such as spaces, tabulations, “.” or “/” in names of elements, as well as
realizing that some old tools cannot differentiate between capital and small letters.

Role of Parameters, House Events and Basic Events: Parameters, house events and basic
events should be always public, in order to facilitate their portability from one tool to another.

Open-PSA Open-PSA Model Exchange Format - 33

Draft n°2.0d – 12/05/2008

V. STOCHASTIC LAYER

V.1. Description
The stochastic layer is populated with failure probabilities or failure probability distributions
associated with basic events (in the event tree linking approach, functional events also can be
associated with such a distribution). Probability distributions are described by (stochastic)
expressions, which are terms, according to the terminology of Chapter III. These expressions
may depend on parameters (variables), so the stochastic layer can be seen a set of stochastic
equations.

Stochastic equations associated with basic events play actually two roles:

– They are used to calculate probability distributions of each basic event, i.e. for a given
mission time t, the probability Q(t) that the given basic event occurs before t. The
probability distribution associated with a basic event is typically a negative
exponential distribution of parameter λ:

 .tQ(t) 1 e−λ= −

Note that, for the sake of the clarity, the Model Exchange Format represents explicitly the
mission time as a parameter of a special type.

– Parameters are sometimes not known with certainty. Sensitivity analyses, such as

Monte-Carlo simulations, are thus performed to study the change in risk due to this
uncertainty. Expressions are therefore used to describe distributions of parameters.
Typically, the parameter λ of a negative exponential distribution will be itself
distributed according to a lognormal law of mean 0.001 and error factor 3.

Stochastic expressions are made of the following elements:

– Boolean and numerical constants,
– Stochastic variables, i.e. parameters, including the special variable to represent the

mission time,
– Boolean and arithmetic operations (sums, differences, products…),
– Built-in expressions that can be seen as macro-expressions that are used to simplify

and shorten the writing of probability distributions (E.g. exponential, Weibull...),
– Primitives to generate numbers at pseudo-random according to some probability

distribution. The base primitive makes it possible to generate random deviates with a
uniform probability distribution. Several other primitives are derived from this one to
generate random deviates with normal, lognormal… distributions. Moreover, it is
possible to define discrete distributions “by hand” through the notion of histogram.

– Directives to test the status of initial and functional events.

Figure V-1 sketches the Backus-Naur form for the constructs of the stochastic layer. Note
that, conversely to variables (events) of the Fault Tree layer, parameters have to be defined
(there is no equivalent to Basic Events).

Open-PSA Open-PSA Model Exchange Format - 34

Draft n°2.0d – 12/05/2008

basic-event-declaration ::= basic-event = expression

parameter-declaration ::= parameter = expression

expression ::=

 constant | parameter | operation | built-in | random-deviate | test-event

constant ::= bool | integer | float

parameter ::= regular-parameter | system-mission-time

operation ::=

 and expression+

 | or expression+

 | not expression

 | eq expression expression

 | df expression expression

 ...

 | neg expression

 | add expression+

 | sub expression+

 | mul expression+

 | div expression+

 | pow expression expression

 ...

 | if expression then expression else expression

built-in ::=

 exponential expression expression

 | Weibull expression expression expression expression

 ...

random-deviate ::=

 uniform-deviate expression expression

 | lognormal-deviate expression expression expression

 | histogram

 ...

test-event ::=

 test-initial-event name

 | test-functional-event name state

Figure V-1. Backus-Naur form for the constructs of the stochastic layer (sketch)

The XML representation of the stochastic layer just reflects these different constructs.

parameter-definition ::=

 <define-parameter name="identifier"

 [role="private|public"] [unit="unit"]>

 [label] [attributes]

 expression

 </define-parameter>

unit ::= bool | int | float | hours | hours-1 | years | years-1

Open-PSA Open-PSA Model Exchange Format - 35

Draft n°2.0d – 12/05/2008

 | demands | fit

expression ::=

 constant | parameter | operation | built-in | random-deviate | test-event

constant ::=

 <bool value="Boolean-value" />

 | <int value="integer" />

 | <float value="float" />

parameter ::=

 <parameter name="identifier" [unit="unit"] />

 | <system-mission-time [unit="unit"] />

operation ::=

 numerical-operation | Boolean-operation | conditional-operation

Figure V-2. Backus-Naur grammar for XML representation of expressions (main)

Operations, built-ins and random deviates will be described in the following sections.

We believe that the formalism to define stochastic equations should be as large and as open as
possible for at least two reasons: first, available tools already propose a large set of
distributions; second this is a easy and interesting way to widen the spectrum of PSA. The
Model Exchange Format proposes a panoply of Boolean and arithmetic operators. More
operations can be added on demand. A major step would be to introduce some algorithmic
concepts like loops and functions. At this stage, it does seem useful to introduce such
advanced concepts in the Model Exchange Format.

V.2. Operations

V.2.1. Numerical Operation
Table V-1 gives the list of arithmetic operators proposed by the Model Exchange Format.
Their XML representation is given Figure V-3.

Operator #arguments Semantics

neg 1 unary minus
add >1 addition
sub >1 subtraction
mul >1 multiplication
div >1 division
pi 0 3.1415926535…
abs 1 absolute value
acos 1 arc cosine of the argument in radians

Open-PSA Open-PSA Model Exchange Format - 36

Draft n°2.0d – 12/05/2008

asin 1 arc sine of the argument in radians
atan 1 arc tangent of the argument in radians
cos 1 cosine
cosh 1 hyperbolic cosine
exp 1 exponential
log 1 (Neperian) logarithm
log10 1 decimal logarithm
mod 2 modulo
pow 1 power
sin 1 sine
sinh 1 hyperbolic sine
tan 1 tangent
tanh 1 hyperbolic tangent
sqrt 1 square root
ceil 1 first integer greater than the argument
floor 1 first integer smaller than the argument
min >1 minimum
max >1 maximum
mean >1 mean

Table V-1. Numerical Operations, their number of arguments and their semantics

Open-PSA Open-PSA Model Exchange Format - 37

Draft n°2.0d – 12/05/2008

numerical-operation ::=

 <neg> expression </neg>

 | <add> expression+ </add>

 | _{expression+}

 | <mul> expression+ </mul>

 | <div> expression+ </div>

 | <pi />

 | <abs> expression </abs>

 | <acos> expression </acos>

 | <asin> expression </asin>

 | <atan> expression </atan>

 | <cos> expression </cos>

 | <cosh> expression </cosh>

 | <exp> expression </exp>

 | <log> expression </log>

 | <log10> expression </log10>

 | <mod> expression expression </mod>

 | <pow> expression expression </pow>

 | <sin> expression </sin>

 | <sinh> expression </sinh>

 | <tan> expression </tan>

 | <tanh> expression </tanh>

 | <sqrt> expression </sqrt>

 | <ceil> expression </ceil>

 | <floor> expression </floor>

 | <min> expression+ </min>

 | <max> expression+ </max>

 | <mean> expression+ </mean>

Figure V-3. Backus-Naur grammar for XML representation of numerical operations

Example: Assume for instance we want to associate a negative exponential distribution with a
failure rate λ=1.23e-4/h to the basic event “pump-failure”. Using primitives defined above,
we can encode explicitly such probability distribution as follows.

<define-basic-event name="pump-failure" >

 <sub>

 <float value="1.0" />

 <exp>

 <mul>

 <neg>

 <parameter name="lambda" />

 </neg>

 <system-mission-time />

 </mul>

 </exp>

 </sub>

</define-basic-event>

<define-parameter name="lambda" >

 <float value="1.23e-4" />

</define-parameter>

Open-PSA Open-PSA Model Exchange Format - 38

Draft n°2.0d – 12/05/2008

V.2.2. Boolean Operations
Table V-2 gives the list of Boolean operators proposed by the Model Exchange Format. Their
XML representation is given Figure V-4.

Operator #arguments Semantics

and > 1 Boolean and
or >1 Boolean or
not 1 Boolean not
eq 2 =
df 2 ≠
lt 2 <
gt 2 >
leq 2 ≤
geq 2 ≥

Table V-2. Boolean operators, their number of arguments and their semantics

Boolean-operation ::=

 <not> expression </not>

 | <and> expression+ </and>

 | <or> expression+ </or>

 | <eq> expression expression </eq>

 | <df> expression expression </df>

 | <lt> expression expression </lt>

 | <gt> expression expression </gt>

 | <leq> expression expression </leq>

 | <geq> expression expression </geq>

Figure V-4. Backus-Naur grammar for XML representation of Boolean operations

V.2.3. Conditional Operations
The Model Exchange Format proposes two conditional operations: an “if-then-else” operation
and a “switch/case” operation. The latter is a list of pairs of expressions, introduced by the tag
“case”. The first expression of the pair should be a Boolean condition. If this condition is
realized, then the second expression is evaluated and its value returned. Otherwise, the next
pair is considered.
The list ends with an expression, in order to be sure that the switch has always a possible
value. The XML representation for conditional operation is given Figure V-5.

conditional-operation ::=

 if-then-else-operation | switch-operation

if-then-else-operation ::=

Open-PSA Open-PSA Model Exchange Format - 39

Draft n°2.0d – 12/05/2008

 <ite> expression expression expression </ite>

switch-operation ::=

 <switch>

 case-operation*

 expression

 </switch>

case-operation ::=

 <case> expression expression </case>

Figure V-5. Backus-Naur grammar for XML representation of conditional operations

Example: Assume for instance we want to give different values to the failure rate “lambda”
depending on a global parameter “stress-level":
“lambda”=1.0e-4/h if “stress-level”=1,
“lambda”=2.5e-4/h if “stress-level”=2, and finally
“lambda”=1.0e-3/h if “stress-level”=3.
The value of “stress-level”will be modified while walking along the sequences of events trees
or depending on the initiating event. Using primitives defined so far, we can encode the
definition of “lambda” as follows.

<define-parameter name="lambda" >

 <switch>

 <case>

 <eq>

 <parameter name="stress-level" />

 <int value="1" />

 </eq>

 <float value="1.0e-4" />

 </case>

 <case>

 <eq>

 <parameter name="stress-level" />

 <int value="2" />

 </eq>

 <float value="2.5e-4" />

 </case>

 <float value="1.0e-3" />

 </switch>

</define-parameter>

V.3. Built-Ins

V.3.1. Description
Built-ins can be seen as macro arithmetic expressions. They are mainly used to simplify the
writing of probability distributions. A special built-in “extern-function” makes it possible to
define externally calculated built-ins. As for arithmetic operators, more built-ins can be added
on demand to the Model Exchange Format. Here follows a preliminary list of built-ins. Table
 IV-1 summarizes this preliminary list.

Open-PSA Open-PSA Model Exchange Format - 40

Draft n°2.0d – 12/05/2008

Exponential with two parameters: this built-in implements the negative exponential
distribution. The two parameters are the hourly failure rate, usually called λ, and the time t.
It definition is as follows.

 .exponential(,) 1 −= − tt e λλ

Exponential with four parameters (GLM): this built-in generalizes the previous one. It makes
it possible to take into account repairable components (through the hourly repairing rate µ)
and failures on demand (through the probability γ of such an event). It takes four parameters,
γ, the hourly failure rate λ, µ and the time t (in this order). Its definition is as follows.

 ()()
exponential(, , ,) − +− +

= − ×
+ +

t
t e

λ µλ λ γ λ µ
γ λ µ

λ µ λ µ

Weibull: this built-in implements the Weibull distribution. It takes four parameters: a scale
parameter α, a shape parameter β, a time shift t0, and the time t (in this order). Its definition is
as follows.

0
0Weibull(, , ,) 1 exp

 − = − −  
   

t t
t t

β

α β
α

Periodic test: In several applications, it is of interest to introduce some specific distributions
to describe periodically tested components. A further investigation is certainly necessary on
this topic. We tentatively give here a candidate definition (that is extracted from one of the
tools we considered).

The “periodic-test” built-in would take the following parameters (in order).

– λ failure rate when the component is working.
– λ* failure rate when the component is tested.
– µ repair rate (once the test showed that the component is failed).
– τ delay between two consecutive tests.
– θ delay before the first test.
– γ probability of failure due to the (beginning of the) test.
– π duration of the test.
– x indicator of the component availability during the test (1 available, 0 unavailable).
– σ test covering: probability that the test detects the failure, if any.
– ω probability that the component is badly restarted after a test or a repair.
– t the mission time.

Figure V-6 illustrates the meaning of the parameters τ, θ and π.

Open-PSA Open-PSA Model Exchange Format - 41

Draft n°2.0d – 12/05/2008

Figure V-6. Meaning of parameters τ, θ and π of the “periodic-test” built-in.

There are three phases in the behaviour of the component. The first phase corresponds to the
time from 0 to the date of the first test, i.e. θ. The second phase is the test phase. It spreads
from times θ+n.τ to θ+n.τ+π, with n any positive integer. The third phase is the functioning
phase. It spreads from times θ+n.τ+π from θ+(n+1).τ.
In the first phase, the distribution is a simple exponential law of parameter λ.
The component may enter in the second phase in three states, either working, failed or in
repair. In the latter case, the test is not performed. The Markov graphs for each of these cases
are pictured Figure V-7.

Figure V-7. Multi-phase Markov graph for the “periodic-test” built-in.

Ai’s , Fi’s, Ri’s states correspond respectively to states where the component is available,
failed and in repair. Dashed lines correspond to immediate transitions. Initial states are
respectively A1, F1 and R1.
The situation is simpler in the third phase. If the component enters available this phase, the
distribution follows an exponential law of parameter λ. If the component enters failed in this
phase, it remains phase up to the next test. Finally, the Markov graph for the case where the
component is in repair is the same as in the second phase.

The Model Exchange Format could provide also two simplified forms for the periodic test
distribution.

Periodic-test with 5 arguments: The first one takes five parameters: λ, µ, τ, θ and t. In that
case, the test is assumed to be instantaneous. Therefore, parameters λ* (the failure rate during
the test) and x (indicator of the component availability during the test) are meaningless. There
other parameters are set as follows.

– γ (the probability of failure due to the beginning of the test) is set to 0.
– σ (the probability that the test detects the failure, if any) is set to 1.
– ω (the probability that the component is badly restarted after a test or a repair) is set to

0.

Open-PSA Open-PSA Model Exchange Format - 42

Draft n°2.0d – 12/05/2008

Periodic-test with 4 arguments: The second one takes only four parameters: λ, τ, θ and t. The
repair is assumed to be instantaneous (or equivalently the repair rate µ = +∞).

Extern functions: The Model Exchange Format should provide a mean to call extern
functions. This makes it extensible and allows the link the PSA assessment tools with
complex tools to calculate physical behavior (like fire propagation or gas dispersion). This
call may take any number of arguments and return a single value at once (some interfacing
glue can be used to handle the case where several values have to be returned). It has been also
suggested that extern function calls take XML terms as input and output. This is probably the
best way to handle communication between tools, but it would be far too complex too embed
XML into stochastic expressions.

Built-in #arguments Semantics

exponential 2 negative exponential distribution with hourly failure rate and
time

exponential 4 negative exponential distribution with probability of failure
on demand, hourly failure rate, hourly repair rate and time

Weibull 4 Weibull distribution with scale and shape parameters, a time
shift and the time

periodic-test 11, 5 or 4 Distributions to describe periodically tested components
extern-function any call to an extern routine

Table V-3. Built-ins, their number of arguments and their semantics

V.3.2. XML Representation
The Backus-Naur grammar for the XML representation of built-ins is given Figure V-8.

built-in ::=

 <exponential> [expression]:2 </exponential>

 | <GLM> [expression]:4 </GLM>

 | <Weibull> [expression]:3 </Weibull>

 | <periodic-test> [expression]:11 </periodic-test>

 | <periodic-test> [expression]:5 </periodic-test>

 | <periodic-test> [expression]:4 </periodic-test>

 | <extern-function name="name" > expression* </extern-function>

Figure V-8. Backus-Naur grammar for XML representation of Built-ins

Positional We adopted a positional definition of arguments. For instance, in the negative

Open-PSA Open-PSA Model Exchange Format - 43

Draft n°2.0d – 12/05/2008

versus
named
arguments

exponential distribution, we assumed that the failure rate is always the first
argument and the mission time always the second. An alternative way would be
to name arguments, i.e. to enclose them into tags explicating their role. For
instance, the failure rate would be enclosed in a tag “failure-rate”, the mission
time in a tag “time” and so on… The problem with this second approach is that
many additional tags must be defined and it is not sure that it helps a lot the
understanding of the built-ins. Nevertheless, we may switch to this approach if
the experience shows that the first one proves to be confusing.

Example: The negative exponential distribution can be encoded in a simple way as follows.

<define-basic-event name="pump-failure" >

 <exponential>

 <parameter name="lambda" />

 <system-mission-time />

 </exponential>

</define-basic-event>

V.4. Primitive to Generate Random Deviates

V.4.1. Description
Primitives to generate random deviates are the real stochastic part of stochastic equations.
They can be used in two ways: in a regular context they return a default value (typically their
mean value). When used to perform Monte-Carlo simulations, they return a number drawn at
pseudo-random according their type. The Model Exchange Format includes two types of
random deviates: built-in deviates like uniform, normal or lognormal and histograms that are
user defined discrete distributions. A preliminary list of distributions which is summarized
Table V-4. As for arithmetic operators and built-ins, this list can be extended on demand.

Distribution #arguments Semantics

uniform-deviate 2 uniform distribution between a lower and an upper
bounds

normal-deviate 2 normal (Gaussian) distribution defined by its mean and
its standard deviation

lognormal-deviate 3 lognormal distribution defined by its mean, its error
factor and the confidence level of this error factor

gamma-deviate 2 gamma distributions defined by a shape and a scale
factors

beta-deviate 2 beta distributions defined by two shape parameters α and
β

histograms any discrete distributions defined by means of a list of pairs

Table V-4. Primitive to generate random deviates, their number of arguments and their
semantics

Open-PSA Open-PSA Model Exchange Format - 44

Draft n°2.0d – 12/05/2008

Uniform Deviates: These primitives describe uniform distributions in a given range defined
by its lower- and upper-bounds. The default value of a uniform deviate is the mean of the
range, i.e. (lower-bound + upper-bound)/2.

Normal Deviates: These primitives describe normal distributions defined by their mean and
their standard deviation (refer to text book for a more detailed explanation). By default, the
value of a normal distribution is its mean.

Lognormal distribution: These primitives describe lognormal distributions defined by their
mean µ and their error factor EF. A random variable is distributed according to a lognormal
distribution if its logarithm is distributed according to a normal distribution. If µ and σ are
respectively the mean and the standard deviation of the distribution, the probability density of
the random variable is as follows.

2
1 1 log

() exp
2. . 2

x
f x

x

µ
σσ π

 − = × −  
   

Its mean, E(x) is defined as follows.

2

() exp
2

E x
σ

µ
 

= + 
 

The confidence intervals [X0,05, X0,95] associated with a confidence level of 0.95 and the
median X0,50 are the following:

[]
[]

0,05

0,95

0,50 0,05 0,95

exp 1.645

exp 1.645

X

X

X X X eµ

µ σ

µ σ

= −

= +

= × =

The error factor EF is defined as follows:

0,95 1.645

0,95

X
EF e

X

σ= =

with
log

1,645

FE
σ = and

2

log ()
2

E x
σ

µ = − .

Once the mean and the error factor are known, it is then possible to determine the confidence
interval and thereby the parameters of the lognormal law.

Gamma Deviates: These primitives describe Gamma distributions defined by their shape
parameter k and their scale parameter θ. If k is an integer then the distribution represents the
sum of k exponentially distributed random variables, each of which has mean θ.

Open-PSA Open-PSA Model Exchange Format - 45

Draft n°2.0d – 12/05/2008

The probability density of the gamma distribution can be expressed in terms of the gamma
function:

1

/

()
()

k
x

k

e
f x x

k

θ

θ
−

−

=
Γ

The default value of the gamma distribution is its mean, i.e. k.θ.

Beta Deviates: These primitives describe Beta distributions defined by two shape parameters
α and β.

The probability density of the beta distribution can be expressed in terms of the B function:

1 1

1 1 1

0

1
(; ,) (1)

(,)

(,) (1)x y

f x x x
B

B x y t t dt

α βα β
α β

− −

− −

= −

= −∫

The default value of the gamma distribution is its mean, i.e. α/(α+β).

Histograms: Histograms are lists of pairs (x1, E1)… (xn, En) where the xi's are numbers such
that xi < xi+1 for i=1…n-1 and the Ei's are expressions.
The xi's represent upper bounds of successive intervals. The lower bound of the first interval
x0 is given apart.
The drawing of a value according to a histogram is a two steps process. First, a value z is
drawn uniformly in the range [x0, xn]. Then, a value is drawn at random by means of the
expression Ei, where i is the index of the interval such xi-1< z ≤ xi.

By default, the value of a histogram is its mean, i.e.

n

i i 1 i
i 1n 0

1
mean(H) (x x).mean(E)

(x x) −
=

= × −
− ∑

Both Cumulative Distribution Functions and Density Probability Distributions can be
translated into histograms.

A Cumulative Distribution Function is a list of pairs (p1, v1)… (pn, vn), where the pi's are such
that pi < pi+1 for i=1… n and pn=1. It differs from histograms in two ways. First, X axis values
are normalized (to spread between 0 and 1) and second they are presented in a cumulative
way. The histogram that corresponds to a Cumulative Distribution Function (p1, v1)… (pn, vn)
is the list of pairs (x1, v1)… (xn, vn), with the initial value x0 is 0, x1 = p1 and xi = pi - pi-1 for
all i>1.

A Discrete Probability Distribution is a list of pairs (d1, m1)… (dn, mn). The di's are
probability densities. They could be however any kind of values. The mi's are midpoints of
intervals and are such that m1 < m2 < … < mn < 1. The histogram that corresponds to a
Discrete Probability Distribution (d1, m1)… (dn, mn) is the list of pairs (x1, d1)… (xn, dn), with
the initial value x0 = 0, x1 = 2.m1 and xi = xi-1 + 2.(mi-xi-1).

Open-PSA Open-PSA Model Exchange Format - 46

Draft n°2.0d – 12/05/2008

V.4.2. XML Representation
The Backus-Naur grammar for the XML representation of random deviates is given

random-deviate ::=

 <uniform-deviate> [expression]:2 </uniform-deviate>

 | <normal-deviate> [expression]:2 </normal-deviate>

 | <lognormal-deviate> [expression]:3 </lognormal-deviate>

 | <gamma-deviate> [expression]:2 </gamma-deviate>

 | <beta-deviate> [expression]:2 </beta-deviate>

 | histogram

histogram ::=

 <histogram > expression bin+ </histogram>

bin ::=

 <bin> expression expression </bin>

Figure V-9. Backus-Naur grammar for XML representation of random deviates

Example: Assume that the parameter “lambda” of a negative exponential distribution is
distributed according to a lognormal distribution of mean 0.001 and error factor 3 for a
confidence level of 95%. The parameter “lambda” is then defined as follows.

<define-parameter name="lambda" >

 <lognormal-deviate>

 <float value="0.001" />

 <float value="3" />

 <float value="0.95" />

 </lognormal-deviate>

</define-parameter>

Example: Assume that the parameter “lambda” has been sampled outside of the model and is
distributed according to the following histogram.

Open-PSA Open-PSA Model Exchange Format - 47

Draft n°2.0d – 12/05/2008

1.50e-4

1.00e-4

0.50e-4

100 150 200 250 300

The XML encoding for “lambda” is as follows.

<define-parameter name="lambda" >

 <histogram>

 <float value"100" />

 <bin> <float value"170" /> <float value="0.70e-4" /> </bin>

 <bin> <float value"200" /> <float value="1.10e-4" /> </bin>

 <bin> <float value"210" /> <float value="1.30e-4" /> </bin>

 <bin> <float value"230" /> <float value="1.00e-4" /> </bin>

 <bin> <float value"280" /> <float value="0.50e-4" /> </bin>

 </histogram>

</define-parameter>

V.5. Directives to Test the Status of Initiating and Functional
Events

V.5.1. Description
The Model Exchange Format provides two special directives to test whether a given initiating
event occurred and whether a given functional event is in a given state. The meaning of these
directives will be further explained Section VII.3.
Table IV-1 presents these directives and their arguments.

Built-in #arguments Semantics

test-initiating-

event

1 <test-initiating-event name="name" /> returns true if
the initiating event of the given name occurred.

test-

functional-

2 <test-functional-event name="name" state="state"

/> returns true if the functional event of the given name is in

Failures

F
requency

Open-PSA Open-PSA Model Exchange Format - 48

Draft n°2.0d – 12/05/2008

event the given state.

Table V-5. Directives to test the status of initiating and functional events

V.5.2. XLM Representation
The XML representation for directives to test the status of initiating and functional events is
given Figure V-10.

test-event ::=

 <test-initiating-event name="name" />

 | <test-functional-event name="name" state="identifier" />

Figure V-10. Backus-Naur grammar for XML representation of directives to test the status of

initiating and functional events

Open-PSA Open-PSA Model Exchange Format - 49

Draft n°2.0d – 12/05/2008

VI. META-LOGICAL LAYER
The meta-logical layer is populated constructs like common cause groups, delete terms,
recovery rules, and exchange events that are used to give flavors to fault trees. This chapter
reviews all of these constructs.

VI.1. Common Cause Groups

VI.1.1. Description
From a theoretical view point, one of the basic assumptions of the fault tree technique is that
occurrences of basic events are independent from a statistical viewpoint. However, most of
the PSA models include, to a large extent, so-called common cause groups. Common cause
groups are groups of basic events whose failure are not independent from a statistical view
point. They may occur either independently or dependently due to a common cause failure.
So far, existing tools embed three models for common cause failures (CCF): the beta-factor
model, the multiple Greek letters (MGL) model and the alpha-factor model. Alpha-factor and
MGL models differ only from the way the factors for each level (2 components fail, 3
components fail…) are given. The Model Exchange Format proposes the three mentioned
models plus a fourth one, so-called phi-factor, which is a more direct way to set factors.

Beta-factor: The β-factor model assumes that if a common cause occurs then all components
of the group fail simultaneously. Components can fail independently. Multiple independent
failures are neglected. The β-factor model assumes moreover that all of the components of
the group have the same probability distribution. It is characterized by this probability
distribution and the conditional probability β that all components fail, given that one
component failed.
Let BE1, BE2... BEn be the n basic events of a common cause group with a probability
distribution Q and a beta-factor β. Applying the beta-factor model on the fault tree consists in
following operations.

1) Create new basic events BECCFi for each BEi to represent the independent occurrence
of BEi and BECCFi to represent the occurrence of all BEi together.

2) Substitute a gate “Gi = BECCFi or BEi” for each basic event BEi.
3) Associate the probability distribution (e.g. β×Q) with the event BECCFi.

Multiple Greek Letters: the Multiple Greek Letters (MGL) model generalizes the beta-factor
model. It considers the cases where sub-groups of 1, 2..., n-1 components of the group fail
together. This model is characterized by the probability distribution of failure of the
components, and n-1 factors ρ2..., ρn. ρk denotes the conditional probability that k
components of the group fail given that k-1 failed.
Let BE1, BE2... BEn be the n basic events of a common cause group with a probability
distribution Q and factors ρ2..., ρn. Applying the MGL model on the fault tree consists in
following operations.

1) Create a basic event for each combination of basic events of the group (there are 2n-1
such combinations).

2) Transform each basic event BEi into a OR-gate Gi over all newly created event basic
events that represent a group that contains BEi.

Open-PSA Open-PSA Model Exchange Format - 50

Draft n°2.0d – 12/05/2008

3) Associate the following probability distribution with each newly created basic event
representing a group of k components (with ρn+1=0).

()
k

k i k 1
i 2

1
Q 1 Q

n 1

k 1

+
=

 
= × ρ × −ρ × −   

 − 

∏

For instance, for a group of 4 basic events: A, B, C and D, the basic event A is transformed
into a gate GA = A or AB or AC or AD or ABC or ABD or ACD or ABDC and the Qk’s are as
follows.

()1 2

2 2 3

3 2 3 4

4 2 3 4

Q 1 Q

1
Q (1) Q

3
1

Q (1) Q
3

Q Q

= −ρ ×

= ×ρ × −ρ ×

= ×ρ ×ρ × −ρ ×

= ρ ×ρ ×ρ ×

Note that if ρk=0 then Qk, Qk+1...are null as well. In such a case it is not necessary to create
the groups with k elements or more.

Alpha-Factor: the alpha-factor model is the same as the MGL model except in the way the
factors are given. Here n factors α1...αn are given. αk represents the fraction of the total
failure probability due to common cause failures that impact exactly k components. The
distribution associated with a group of size k is as follows:

 k
k n

i
i 1

1
Q Q

n 1

k 1 =

α
= × ×

−  α − 
∑

Phi-Factor: the phi-factor model is the same as MGL and alpha-factor models except that
factors for each level are given directly.

k kQ Q= φ ×

Indeed the sum of the φi’s should equal 1.

VI.1.2. XML representation
The Backus-Naur form for the XML description of Common Cause Failure Groups is given
Figure VI-1. Note that the number of factors depends on the model. Tools are in charge of
checking that there is the good number of factors. Note also that each created basic event is
associated with a factor that depends on the model and the level of the basic event. The sum
of the factors associated with basic events of a member of the CCF group should be equal to
1, although this is not strictly required by the Model Exchange Format.

Open-PSA Open-PSA Model Exchange Format - 51

Draft n°2.0d – 12/05/2008

CCF-group-definition ::=

 <define-CCF-group name="identifier" model="CCF-model" >

 [label]

 [attributes]

 members

 distribution

 factors

 </define-CCF-group>

members ::=

 <members>

 <basic-event name="identifier" />+

 </members>

factors ::=

 <factors> factor+ </factors>

 | factor

factor ::=

 <factor [level="integer"] >

 expression

 </factor>

distribution ::=

 <distribution >

 expression

 </distribution>

CCF-model ::= beta-factor | MGL | alpha-factor | phi-factor

Figure VI-1. Backus-Naur form for the XML representation of CCF-groups

Example: Here follows a declaration of a CCF-group with four elements under the MGL
model.

<define-CCF-group name="pumps" model="MGL" >

 <members>

 <basic-event name="pumpA" />

 <basic-event name="pumpB" />

 <basic-event name="pumpC" />

 <basic-event name="pumpD" />

 </members>

 <factors>

 <factor level="2" >

 <float value="0.10" />

 </factor>

 <factor level="3" >

 <float value="0.20" />

 </factor>

 <factor level="4" >

 <float value="0.30" />

 </factor>

 </factors>

 <distribution>

Open-PSA Open-PSA Model Exchange Format - 52

Draft n°2.0d – 12/05/2008

 <exponential>

 <parameter name="lambda" />

 <system-mission-time />

 </exponential>

 </distribution>

</define-CCF-group>

VI.2. Delete Terms, Recovery Rules and Exchange Events

VI.2.1. Description
Delete Terms: Delete Terms are groups of pair wisely exclusive basic events. They are used
to model impossible configurations. A typical example is the case where:

– the basic event a can only occur when the equipment A is in maintenance,
– the basic event b can only occur when the equipment B is in maintenance,
– equipments A and B are redundant and cannot be simultaneously in maintenance.

In most of the tools, delete terms are considered as a post-processing mechanism: minimal
cutsets containing two basic events of a delete terms are discarded. In order to speed-up
calculations, some tools use basic events to discard minimal cutsets on the fly, during their
generation.

Delete Terms can be handled in several ways. Let G = {e1, e2, e3} be a Delete Term (group).

– A first way to handle G, is to use it to post-process minimal cutsets, or to discard them
on the fly during their generation. If a minimal cusets contains at least two of the
elements of G, it is discarded.

– A global constraint “CG = not 2-out-of-3(e1, e2, e3)” is introduced and each top event
(or event tree sequences) “top” is rewritten as “top and CG”.

– As for Common Causes Groups, the ei’s are locally rewritten in as gates:
+ e1 is rewritten as a gate ge1 = e1 and (not e2) and (not e3)
+ e2 is rewritten as a gate ge2 = e2 and (not e1) and (not e3)
+ e3 is rewritten as a gate ge3 = e3 and (not e1) and (not e2)

Recovery Rules: Recovery Rules are an extension of Delete Terms. A Recovery Rule is a
couple (H, e), where H is a set of basic events and e is a (fake) basic event. It is used to post-
process minimal cutsets: if a minimal cutset C contains H, the e is added to C. Recovery
Rules are used to model actions taken in some specific configurations to mitigate the risk
(hence their name).

Here several remarks can be made.

– It is possible to mimics Delete Terms by means of recovery rules. To do so, it suffices
to assign the basic event e to the value “false” or the probability 0.0.

– As for Delete Terms, it is possible to give purely logical interpretation to Recovery
Rules. The idea is to add a global constraint “H ⇒ e”, i.e. “not H or e”, for each
Recovery Rule (H, e).

– Another definition of Recovery Rules as a post-processing is that the event e is
substituted for subset H in the minimal cutset. This definition has however the major
drawback to be impossible to interpret in a logical way. No Boolean formula can
withdraw events from a configuration.

Open-PSA Open-PSA Model Exchange Format - 53

Draft n°2.0d – 12/05/2008

Exchange Events: Exchange Events are very similar to Recovery Rules. An Exchange Event
(Rule) is a triple (H, e, e’), where H is a set of basic events and e and e’ are two basic events.
Considered as a post-processing of minimal cutsets, such a rule is interpreted as follows. If
the minimal cutset contains both the set H and the basic event e, then the basic event e’ is
substituted for e in the cutset. For the same reason as above, Exchange Events cannot be
interpreted in a logical way.

VI.2.2. All Extra-Logical Constructs in One: the Notion of Substitution
Constructs that cannot be interpreted in a logical way should be avoided for at least two
reasons. First, models containing such constructs are not declarative. Second and more
importantly, they tighten assessment tools to one specific type of algorithms. The second
interpretation of Recovery Rules and Exchange Events tighten the models to be assessed by
means of the minimal cutsets approach.
Nevertheless, Recovery Rules and Exchange Events are useful and broadly used in practice.
Fortunately, Exchange Events (considered as a post processing mechanism) can be avoided in
many cases by using the instructions that give flavors to fault trees while walking along event
tree sequences: in a given sequence, one may decide to substitute the event e’ for the event e
(or the parameter p’ for the parameter p) in the Fault Trees collected so far. This mechanism
is perfectly acceptable because it applies while creating the Boolean formula to be assessed.

It is not yet possible to decide whether Recovery Rules (under the second interpretation) and
Exchange Events can be replaced by purely declarative constructs or by instructions of event
trees. This has to be checked on real-life models. To represent Delete Term, Recovery Rules
and Exchange Events, the Model Exchange Format introduces a unique construct: the notion
of substitution.

A substitution is a triple (H, S, t) where:

– H, the hypothesis, is a (simple) Boolean formula built over basic events,
– S, the source, is also a possibly empty set of basic events, and finally
– t, the target, is either a basic event or a constant.

Let C be a minimal cutset, i.e. a set of basic events. The substitution (H, S, t) is applicable on
C if C satisfies H (i.e. if H is true when C is realized) . The application of (H, S, t) on C
consists in removing from C all the basic events of S and in adding to C the target t.
Note that if t is the constant “true”, adding t to C is equivalent to add nothing. If t is the
constant “false” adding t to C is equivalent to discard C.
This notion of substitution generalizes the notions of Delete Terms, Recovery Rules and
Exchange Events:

– Let D = {e1, e2…, en} be a group of pair wisely exclusive events (a Delete Term).
Then D is represented as the substitution (2-out-of-n(e1, e2…, en), ∅, false).

– Let (H, e) a Recovery Rule, under the first interpretation, where H = {e1, e2…, en}.
Then, (H, e) is represented by the substitution (e1 and e2 and…and en, ∅, e).

– Let (H, e) a Recovery Rule, under the second interpretation, where H = {e1, e2…, en}.
Then (H, e) is represented by the substitution (e1 and e2 and…and en, H, e).

– Finally, let (H, e, e’) be an Exchange Event Rule, where H = {e1, e2…, en}. Then (H, e,
e’) is represented by the substitution (e1 and e2 and…and en and e, {e}, e’).

Note that a substitution (H, ∅, t) can always be interpreted as the global constraint “H ⇒ t”.

Open-PSA Open-PSA Model Exchange Format - 54

Draft n°2.0d – 12/05/2008

VI.2.3. XML Representation
The Backus-Naur form for the XML description of substitutions is given Figure VI-2. The
optional attribute “type” is used to help tools that implement “traditional” substitutions.

substitution-definition ::=

 <define-substitution [name="identifier"] [type="identifier"] >

 [label] [attributes]

 <hypothesis> Boolean-formula </hypothesis>

 [<source> basic-event+ </source>]

 <target> basic-event+ | Boolean-constant </target>

 </define-substitution >

Figure VI-2. Backus-Naur form for the XML representation of exclusive-groups

Example: Assume that Basic Events “failure-pump-A”, “failure-pump-B” and ““failure-
pump-C” are pair wisely exclusive (they form a delete term) because they can only occur
when respectively equipment A, B and C are under maintenance and only one equipment can
be in maintenance at once. The representation of such a delete term is as follows.

<define-substitution name="pumps" type="delete-terms" >

 <hypothesis>

 <atleast min="2">

 <basic-event name="failure-pump-A" />

 <basic-event name="failure-pump-B" />

 <basic-event name="failure-pump-C" />

 </atleast>

 </hypothesis>

 <target>

 <constant value="false" />

 <target>

</define-substitution >

Example: Assume that if the valve V is broken and an overpressure is detected in pipe P, then
a mitigating action A is performed. This is a typical Recovery Rule (under the first
interpretation), where the hypothesis is the conjunction of Basic Events “valve-V-broken” and
“overpressure-pipe-P” and the added Basic Event is “failure-action-A”. It is encoded as
follows.

<define-substitution name="mitigation" type="recovery-rule" >

 <hypothesis>

 <and>

 <basic-event name="valve-V-broken" />

 <basic-event name="overpressure-pipe-P" />

 </and>

 </hypothesis>

 <target>

 <basic-event name="failure-action-A" />

 <target>

</define-substitution >

Open-PSA Open-PSA Model Exchange Format - 55

Draft n°2.0d – 12/05/2008

Example: Assume that if magnitude of the earthquake is 5, 6 or 7, the size of a leak of a given
pipe P get large, while it was small for magnitudes below 5. We can use an exchange event
rule to model this situation.

<define-substitution name="magnitude-impact" type="exchange-event" >

 <hypothesis>

 <or>

 <basic-event name="magnitude-5" />

 <basic-event name="magnitude-6" />

 <basic-event name="magnitude-7" />

 </or>

 </hypothesis>

 <source>

 <basic-event name="small-leak-pipe-P" />

 <source>

 <target>

 <basic-event name="large-leak-pipe-P" />

 <target>

</define-substitution >

Open-PSA Open-PSA Model Exchange Format - 56

Draft n°2.0d – 12/05/2008

VII. EVENT TREE LAYER

VII.1. Preliminary Discussion
The first three layers are rather straightforward to describe since there is a general agreement
on how to interpret fault trees and probability distributions. The Event Tree layer is much
more delicate to handle. The reason stands in the dynamic nature of event trees and the lack
of common interpretation for this formalism. To illustrate this point, we shall consider the toy
example pictured Figure VII-1.

F
I

G H
S1

S2

S3
S4

S5

S6

Figure VII-1. A Small Event Tree

This event tree is made of the following elements.

• An initiating event I.
• Three functional events F, G and H.
• Six sequences ending in six (a priori) different states S1 to S6.

The numbered black dots should be ignored for now. We added them only for the
convenience of the forthcoming discussion.

The expected interpreted interpretation of this event tree is as follows. A fault tree is
associated with each functional event. This fault tree describes how the functional event may
occur. For the sake of the simplicity, we may assume that its top-event has the same name as
the functional event itself. Upper branches represent a success of the corresponding safety
mission while lower branches represent its failure. Applying the so-called fault tree linking
approach, we obtain the following interpretation for the sequences.

 S1 = I and not F and not H S4 = I and F and not G and H
 S2 = I and not F and H S5 = I and F and G and not F
 S3 = I and F and not G and not H S6 = I and F and G and H

In practice, things are less simple:

Open-PSA Open-PSA Model Exchange Format - 57

Draft n°2.0d – 12/05/2008

• There may be more that one initiating event, because the same event tree can be used
with different flavors.

• Values of house events may be changed at some points along the branches to give
flavors to fault trees. The value of a house event may be changed either locally to a
fault tree, or for all the fault trees encountered after the setting point.

• The flavoring mechanism may be even more complex: some gates or basic events may
be negated; some parameters of probability distributions may be impacted.

• The flavor given to a fault tree may depend on what has happened so far in the
sequence: initiating event, value of house events...

• Some success branches may not be interpreted as the negation of the associated fault
tree but rather as a bypass. This interpretation of success branches is typically tool-
dependent: some tools (have options to) ignore success branches; therefore modelers
use this “possibility” to “factorize” models.

• Branching may have more than two alternatives, or represent multi-states, not just
success and failure, each alternative being labeled with a different fault tree.

• In the event tree linking approach, branching may involve no fault tree at all, but rather
a multiplication by some factor of the current probability of the sequence.

• It is sometimes convenient to replace a sub-tree by a reference to a previously define
sub-tree. For instance, if we identify end-states S1 and S3 one the one hand, S2 and S4
on the other hand, we can merge the two corresponding sub-trees rooted. It saves
space (both in computer memory and onto the display device) to replace the latter by a
reference to the former.

In a word, event trees cannot be seen as a static description formalism like fault trees. Rather,
they should be seen as a kind of graphical programming language. This language is used to
collect and modify data when walking along the sequences, and even to decide when to stop
to walk a sequence (in the event tree linking approach). The Model Exchange Format should
thus reflect this programming nature of event trees.

VII.2. Structure of Event Trees

VII.2.1. Description
The Model Exchange Format distinguishes the structure of the event trees, i.e. the set of
sequences they encode, from what is collected along the sequences and how it is collected.
Let us consider for now only the structural view point. With that respect, an event tree is
made of the following components.

• One or more initiating events;
• An ordered set of functional events (the columns);
• A set of end-states (so called sequences); and finally
• A set of branches to describe sequences.

Branches end up either with a sequence name, or with a reference to another branch (such
references are sometimes called transfers). They contain forks. Each fork is associated with a
functional event. The initiating event could also be seen as a special fork (between the
occurrence of this event and the occurrence of … no event). In the Model Exchange Format,
alternatives of the fork are called paths. Paths are labeled by state of the functional event that
labels the fork.
Let us consider again the event tree pictured Figure VII-1. Assume that end states S1 and S3
on the one hand, S2 and S4 and the other hand are identical and that we merge the

Open-PSA Open-PSA Model Exchange Format - 58

Draft n°2.0d – 12/05/2008

corresponding sub-trees. Assume moreover that the lowest success branch of the functional
event H is actually a bypass. Then, the structure of the tree is pictured Figure VII-2. On this
figure, nodes of the tree are numbered from 1 to 8. The initiating event is represented as a
fork. Finally, the branch (the sub-tree) rooted by the node 2 is named B1.

S1

S2

S5

S6

1 2

5

3

4

6 7

8

fork F

fork G

start I

fork H

fork H

0

B1

none

suc cess suc cess

bypass

failure failure

failure

failure

suc cess

Figure VII-2. Structure of an Event Tree

Components of the event tree pictured Figure VII-2 are the following.

• The initiating event I.
• The three functional events F, G and H.
• The end states S1, S2, S5 and S6.
• The branch B1.
• The tree rooted by the initial node (here the node 1).

Forks decompose the current branch according to the state of a functional event. Usually, this
state is either “success” or “failure”. It may be “bypass” as well (as in our example for the
path from node 6 to node 7). In the case of multiple branches, the name of state is defined by
the user.

Instructions to collect and to modify fault trees and probability distributions are applied at the
different nodes. Instructions to be applied may depend on the initiating event and the states of
functional events.

The states of functional events at a node depend on the path that has been followed from the
root node to this node. By default, functional events are in an unspecified state, i.e. that the
predicate “test-functional-event” (see section V.5) returns false in any case. Table VII-1 gives
the states of functional events for all of the possible paths starting from the root node of the
event tree pictured Figure VII-2. Empty cells correspond to unspecified states.

path F G H

1
1-2 success
1-2-3 success success

Open-PSA Open-PSA Model Exchange Format - 59

Draft n°2.0d – 12/05/2008

1-2-4 success failure
1-5 failure
1-5-2 failure success
1-5-2-3 failure success success
1-5-2-4 failure success failure
1-5-6 failure failure
1-5-6-7 failure failure bypass
1-5-6-8 failure failure failure

Table VII-1. States of Functional Events for the different paths of the Event Tree of Figure

 VII-2

As mentioned above, an event tree may be parametric: the same tree can be used for several
initiating events. To implement this idea, the Model Exchange Format provides the analyst
with the notion of group of initiating events. Such a group has a name and may contain sub-
groups. Groups of initiating events may be freely defined inside or outside event trees. There
is one condition however: an initiating event can be used in only one tree.

VII.2.2. XML Representation
We are now ready to explicitly define the XML grammar of the structure of event trees. Its
Backus-Naur form is given Figure VII-3 and Figure VII-4. In these figures, we leave
instructions unspecified, for they don’t concern the structure of the tree and are the subject of
the next section. Note that branches and functional events cannot be declared (nor referred to)
outside event trees, for there would be no meaning in doing so.

initiating-event-definition ::=

 <define-initiating-event name="identifier" [event-tree="identifier"] >

 [label] [attributes]

 instruction*

 </define-initiating-event>

initiating-event-group-definition::=

 <define-initiating-event-group name="identifier" [event-

tree="identifier"] >

 [label] [attributes]

 initiating-event+

 </define-initiating-event-group>

initiating-event ::=

 <initiating-event name="identifier" />

 | <initiating-event-group name="identifier" />

Figure VII-3. Backus-Naur form of the XML representation of initiating events

event-tree-definition ::=

 <define-event-tree name="identifier" >

 [label]

 [attributes]

Open-PSA Open-PSA Model Exchange Format - 60

Draft n°2.0d – 12/05/2008

 functional-event-definition*

 sequence-definition*

 branch-definition*

 initial-state

 </define-event-tree>

functional-event-definition ::=

 <define-functional-event name="identifier" >

 [label]

 [attributes]

 </define-functional-event>

sequence-definition ::=

 <define-sequence name="identifier" >

 [label]

 [attributes]

 instruction+

 </define-sequence>

branch-definition ::=

 <define-branch name="identifier" >

 [label]

 [attributes]

 branch

 </define-branch>

initial-state ::=

 <initial-state>

 branch

 </initial-state>

branch ::= instruction* (fork | end-state)

fork ::= <fork functional-event="identifier"> path+ </fork>

path ::= <path state="identifier" > branch </path>

end-state ::=

 <sequence name="identifier" />

 | <branch name="identifier" />

Figure VII-4. Backus-Naur form of the XML representation of event trees and sequences

Example: Consider again the event tree pictured Figure VII-2. The XML description for this
example is given Figure VII-5.

<define-event-tree name="my-first-event-tree" >

 <define-functional-event name="F" />

 <define-functional-event name="G" />

 <define-functional-event name="H" />

 <define-sequence name="S1" />

Open-PSA Open-PSA Model Exchange Format - 61

Draft n°2.0d – 12/05/2008

 <define-sequence name="S2" />

 <define-sequence name="S5" />

 <define-sequence name="S6" />

 <define-branch name="sub-tree7" >

 <fork functional-event="H" >

 <path state="success" >

 <sequence name="S1" />

 </path>

 <path state="failure" >

 <sequence name="S2" />

 </path>

 </fork>

 <define-branch>

 <initial-state>

 <fork functional-event="F" >

 <path state="success" >

 <branch name="sub-tree7" />

 </path>

 <path state="failure">

 <fork functional-event="G" >

 <path state="success" >

 <branch name="sub-tree7" />

 </path>

 <path state="failure">

 <fork functional-event="H">

 <path state="success" >

 <sequence name="S5" />

 </path>

 <path state="failure" >

 <sequence name="S6" />

 </path>

 </fork>

 </path>

 </fork>

 </path>

 </fork>

 </initial-state>

</define-event-tree>

Figure VII-5. XML representation for the structure of the Event Tree pictured Figure VII-2

VII.3. Instructions

VII.3.1. Description
Figure VII-5 gives the XML representation for the structure of an event tree. This structure
makes it possible to walk along the sequences, but not to construct the Boolean formulae
associated with each sequences. To do so, we need to fill the structure with instructions.
Instructions are actually used for two main purposes:

• To collect formulae or stochastic expressions and
• To define flavors of fault trees and probability distributions, i.e. to set values of house

events and flag parameters.

The collection of a top event consists in and-ing the formula associated with the sequence
with a copy of the fault tree rooted with the top event. In the Model Exchange Format, the

Open-PSA Open-PSA Model Exchange Format - 62

Draft n°2.0d – 12/05/2008

operation is performed by means of the instruction “collect-formula”. The collection of an
expression multiplies the current probability of the sequence by the value of this expression.
In the Model Exchange Format, the operation is performed by means of the instruction
“collect-expression”.

To give flavors to fault trees, i.e. to change the values of gates, house events, basic events and
parameters, the Model Exchange Format introduces the four corresponding instruction: “set-
gate”, “set-house-event”, “set-basic-event” and “set-parameter”.
Sequences are walked from left to right. Therefore, when a value of an element is changed,
this change applies on the current environment and propagates to the right. This default
behavior can be changed by using the flag “direction”, which can take either the value
“forward” (the default), “backward” or “both”. This feature should be handled with much
care.

The flavor given to fault trees, as well as what is collected, may depend on the initial event
and the current state of functional events. To do so, the Model Exchange Format provides an
if-then-else instruction (the “else” part is optional) and the two expressions “test-initial-event”
and “test-functional-event”. These two instructions have been introduced Section V.3. Since
the then- and else-branches of the “if-then-else” may contain several instructions, the Model
Exchange Format introduces the notion of block of instructions.

Finally, some models require to link event trees. A special instruction “event-tree” is
introduced for this purpose. It should be used only in sequence definitions, i.e. in end-state.

It is sometimes the case that the same values of house events and parameter flags are used at
several places. Such a configuration is called a split-fraction in the event tree linking
approach. The Model Exchange Format refers it as a rule for it is a sequence of instructions.

VII.3.2. XML Representation
The Backus-Naur form for the XML representation of instructions is given Figure VII-6.

Open-PSA Open-PSA Model Exchange Format - 63

Draft n°2.0d – 12/05/2008

instruction ::= set | collect | if-then-else | block | rule | link

set ::= set-gate | set-house-event | set-basic-event | set-parameter

set-gate ::=

 <set-gate name="identifier" [direction="direction"] >

 formula

 </set-gate>

set-house-event ::=

 <set-house-event name="identifier" [direction="direction"] >

 Boolean-constant

 </set-house-event>

set-basic-event ::=

 <set-basic-event name="identifier" [direction="direction"] >

 expression

 </set-basic-event>

set-parameter ::=

 <set-parameter name="identifier" [direction="direction"] >

 expression

 </set-parameter>

direction ::= forward | backward | both

if-then-else ::=

 <if> expression instruction [instruction] </if>

collect ::= collect-formula | collect-expression

collect-formula ::= <collect-formula> formula </collect-formula>

collect-expression ::= <collect-expression> expression </collect-

expression>

block ::= <block> instruction* </block>

rule ::= <rule name="identifier" />

link ::= <event-tree name="name" />

rule-definition ::=

 <define-rule name="identifier" >

 [label] [attributes]

 instruction+

 </define-rule>

Figure VII-6. Backus-Naur form for the XML representation of instructions

Example: Consider again the event tree pictured Figure VII-2. The XML representation for
the structure of this tree has been given Figure VII-5. Assume that the success branch of the
lower fork on system H is a bypass. The XML description for the branches of this example is

Open-PSA Open-PSA Model Exchange Format - 64

Draft n°2.0d – 12/05/2008

given Figure VII-7. It is easy to verify by traversing this tree by hand so that it produces the
expected semantics.

<define-event-tree name="my-first-event-tree" >

 ...

 <initial-state>

 <fork functional-event="F" >

 <path state="success" >

 <collect-formula> <not> <gate name="F" > </not> </collect-formula>

 <branch name="sub-tree7" />

 </path>

 <path state="failure" >

 <collect-formula> <gate name="F" > </collect-formula>

 <fork functional-event="G" >

 <path state="success" >

 <collect-formula> <not> <gate name="G" > </not> </collect-

formula>

 <branch name="sub-tree7" />

 </path>

 <path state="failure" >

 <collect-formula> <gate name="G" > </collect-formula>

 <fork functional-event="H">

 <path state="bypass" >

 <!-- here nothing is collected -->

 <sequence name="S5" />

 </path>

 <path state="failure" >

 <collect-formula> <gate name="H" > </collect-formula>

 <sequence name="S6" />

 </path>

 </fork>

 </path>

 </fork>

 </path>

 </fork>

 </initial-state>

</define-event-tree>

Figure VII-7. XML representation of the branches of the event tree pictured Figure VII-2

This example does not set any house events or flag parameters. To set a house event for all
sub-sequent sub-tree exploration (including the next fault tree to be collected), it suffices to
insert an instruction “set” in front of the instruction “collect”. E.g.

…

<set-house-event name"="h1"> <bool value="true" /> </set-house-event>

<collect-formula> <gate name="G" > </collect-formula>

…

To set the same house event locally for the next fault tree to be collected, it suffices to set
back its value to “false” after the gathering of the fault tree. E.g.

…

<set-house-event name="h1"> <bool value="true" /> </set-house-event>

Open-PSA Open-PSA Model Exchange Format - 65

Draft n°2.0d – 12/05/2008

<collect-formula> <gate name="G" > </collect-formula>

<set-house-event name="h1"> <bool value="false" /> </set-house-event>

…

The same principle applies to parameters.

Assume now that we want to set the parameters “lambda1” and “lambda2” of some
probability distributions to “0.001” if the initiating event was “I1” and the functional event
“G” is in the state failure and to “0.002” otherwise. This goal is achieved by means of a “if-
then-else” construct and the “test-initial-event” expression. E.g.

…

<if>

 <and>

 <test-initial-event name="I1" />

 <test-functional-event name="G" state="failure" />

 </and>

 <block>

 <set-parameter name="lambda1"> <float value="0.001" /> </set-parameter>

 <set-parameter name="lambda2"> <float value="0.001" /> </set-parameter>

 </block>

 <block>

 <set-parameter name="lambda1"> <float value="0.002" /> </set-parameter>

 <set-parameter name="lambda2"> <float value="0.002" /> </set-parameter>

 </block>

</if>

…

Finally, we could imagine that the sequence S1 is linked to an event tree ET2 if the initiating
event was I1 and to another event tree ET3 otherwise. The definition of the sequence S1
would be as follows.

<define-sequence name="S1" >

 <if>

 <test-initial-event name="I1" />

 <event-tree name="ET2" />

 <event-tree name="ET3" />

 </if>

</define-sequence>

Open-PSA Open-PSA Model Exchange Format - 66

Draft n°2.0d – 12/05/2008

VIII. ORGANIZATION OF A MODEL
This chapter discusses the organizations of models. It includes the definition of two
additional constructs: the notions of consequence, consequence group and alignment.

VIII.1. Additional Constructs

VIII.1.1. Consequences and Consequence Groups
It is often convenient to group sequences of event trees into bins of sequences with similar
physical consequences (e.g. Core Melt). The Model Exchange Format provides the notion of
consequence to do so. A consequence is characterized by an event tree, a particular initiating
event for this event tree and a particular sequence (end-state) of the same tree. Consequences
are given a name. Groups of consequences can be defined as well. They are also given a
name, and can include sub-groups. The Backus-Naur form for the XML representation of
declarations of groups of consequences is given Figure VIII-1.

consequence-definition ::=

 <define-consequence name="identifier" >

 [label] [attributes]

 <initiating-event name="identifier" />

 <sequence name="identifier" />

 </define-consequence>

consequence-group-definition ::=

 <define-consequence-group name="identifier" >

 [label] [attributes]

 consequence | consequence-group

 </define-consequence-group>

consequence ::=

 <consequence name="identifier" />

consequence-group ::=

 <consequence-group name="identifier" />

Figure VIII-1. Backus-Naur form of the XML representation of consequence groups

Note that consequences and consequences groups can be used as initiating events (see section
 VII.2.2). This mechanism makes it possible to link event trees.

VIII.1.2. Missions, Phases
Phases are physical configurations (like operation, maintenance...) in which the plant spends a
fraction of the mission time. Phases are grouped into missions. The time fractions of the
pahses of a mission should sum to 1. House events and parameters may be given values

Open-PSA Open-PSA Model Exchange Format - 67

Draft n°2.0d – 12/05/2008

different values in each phase. The Backus-Naur form for the XML representation of
declarations of phases is given Figure VIII-2.

mission-definition ::=

 <define-mission name="identifier" >

 [label] [attributes]

 define-phase+

 </define-alignment>

phase-definition ::=

 <define-phase name="identifier" time-fraction="float" >

 [label] [attributes]

 instruction*

 </define-phase>

Figure VIII-2. Backus-Naur form of the XML representation of Missions and Phases

VIII.2. Splitting the Model into Several Files
So far, we have written as if the model fits completely into a single file. For even medium
size PSA models this assumption not compatible with Quality Control. Moreover, such a
monolithic organization of data would be very hard to manage when several persons work
together on the same model.
A first way to split the model into several files is to use the XML notion of entities: in any
XML file it is possible to declare file entities in the preamble and to include them in the body
of the document. This mechanism is exemplified below.

<?xml version="1.0" ?>

<!DOCTYPE SMRF

 [!ENTITY file1 SYSTEM "file1.xml"

 ENTITY file2 SYSTEM "file2.xml"

>

<smrf>

 ...

 &file1;

 ...

 &file2;

 ...

</smrf>

This mechanism has however the drawback that XML tools have to include actually the files
into the document, hence making its manipulation heavier.

The Model Exchange Format proposes another simple mechanism to achieve the same goal:
the tag include. This tag can be inserted at any place in a document. Its effect is to load the
content of the given file into the model. E.g.

<opsa-mef>

 ...

 <include file="basic-events.xml" />

Open-PSA Open-PSA Model Exchange Format - 68

Draft n°2.0d – 12/05/2008

 ...

</opsa-mef>

VIII.3. Organization of a Model
The Model Exchange Format introduces five types of containers: models at the top level,
event trees, fault trees, components and model-data. The Model Exchange Format introduces
also eighteen constructs. Figure VIII-3 shows the containers and the constructs they can
define.

model

event-tree

fault-tree

component

parameter
basic-event
house-event
gate
component

fault-tree

CCF-group
substitution

branch
sequence
functional-event
initiating-event
initiating-event-group
rule
event-tree

mission
consequence-group
consequence

model-data

Figure VIII-3. Containers and the constructs they can define

Figure VIII-4 gives the XML representation of models. This representation just collects what
has been defined so far.

model ::=

 <?xml version="1.0" ?>

 <!DOCTYPE opsa-mef >

 <opsa-mef>

 [label] [attributes]

 (

 mission-definition

 | consequence-group-definition | consequence-definition

 | event-tree-definition

 | rule-definition

Open-PSA Open-PSA Model Exchange Format - 69

Draft n°2.0d – 12/05/2008

 | initiating-event-group-definition | initiating-event-definition

 | fault-tree-definition

 | substitution-definition | CCF-group-definition

)*

 </opsa-mef>

event-tree-definition ::=

 <define-event-tree name="identifier">

 [label] [attributes]

 functional-event-definition*

 sequence-definition*

 branch-definition*

 initial-event

)*

 </define-event-tree>

fault-tree-definition ::=

 <define-fault-tree name="identifier">

 [label] [attributes]

 (

 substitution-definition | CCF-group-definition

 | component-definition

 | gate-definition | house-event-definition

 | basic-event-definition | parameter-definition

)*

 </define-fault-tree>

component-definition ::=

 <define-component name="identifier">

 [label] [attributes]

 (

 substitution-definition | CCF-group-definition

 | component-definition

 | gate-definition | house-event-definition

 | basic-event-definition | parameter-definition

)*

 </define-component>

model-data ::=

 <model-data>

 (house-event-definition | basic-event-definition | parameter-

definition)*

 </model-data>

Figure VIII-4. Backus-Naur form for the XML representation of containers

Open-PSA Open-PSA Model Exchange Format - 70

Draft n°2.0d – 12/05/2008

IX. REPORT LAYER

IX.1. Preliminary Discussion
The report layer is populated with constructs to save results of calculations. These constructs
fall into two categories:

• Constructs to tell which software, algorithm(s) and option(s) were used to produce the
results, and

• The results themselves.
It is almost impossible and probably not even desirable to normalize fully the report layer.
Tools are very different from one another and produce a wide variety of results. New
calculation methods are regularly proposed. To normalize everything would lead to a huge
and anyway incomplete format. Moreover, the way results are arranged into reports depends
on the study. It is also, at least to some extent, a matter of taste.
If the Model Exchange Format cannot give a formal structure for the report layer, it can at
least suggest a style to describe what has been calculated and how it has been calculated. It
can provide also a check-list of what should be included as information to make results truly
exportable and importable. The existence of such report style would be very useful for
reporting tools (whether they are graphic or textual): it would be much easier for these tools to
extract the information they need from the XML result files.

IX.2. Information about calculations
Here follows a non exhaustive list of information about how the results have been obtained
that can be relevant and other special or unique features of the model.

• Software
o Version
o Contact organization (editor, vendor...)
o ...

• Calculated quantities
o Name
o Mathematic definition
o Approximations used
o ...

• Calculation method(s)
o Name
o Limits (e.g. number of basic events, of sequences, of cutsets)
o Preprocessing techniques (modularization, rewritings...)
o Handling of success terms
o Cutoffs, if any (absolute, relative, dynamic, ...)
o Are delete terms, recovery rules or exchange events applied?
o Extra-logical methods used
o Secondary software necessary
o Warning and caveats
o Calculation time
o ...

Open-PSA Open-PSA Model Exchange Format - 71

Draft n°2.0d – 12/05/2008

• Features of the model
o Name
o Number of: gates, basic events, house events, fault trees, event trees, functional

events, initiating events
• Feedback

o Success or failure reports
o ...

IX.3. Format of Results
PSA tools produce many different kinds of results. Some are common to most of the tools
(e.g. probability/frequency of some group of consequences, importance factors, sensitivity
analyses...). They fall into different categories. The following three categories are so frequent
that is it worth to normalize the way they are stored into XML files.

• Minimal cutsets (and prime implicants)
• Statistical measures (with moments)
• Curves

IX.3.1. Minimal Cutsets
A first (and good) way to encode minimal cutsets consists in using the representation of
formulae defined by the Model Exchange Format. However, it is often convenient to attach
some information to each product, which is not possible with the formulae of the Model
Exchange Format. An alternative XML representation for sums of products (sets of minimal
cutsets are a specific type of sums of products) is given Figure IX-1. More attributes can be
added to tags “sum-of-products” and “product” to carry the relevant information.

sum-of-products ::=

 <sum-of-products

 [name="identifier"]

 [description="text"]

 [basic-events="integer"]

 [products="integer"]

 >

 product*

 </sum-of-products>

product ::=

 <product [order="integer"] >

 literal*

 </product>

literal ::=

 <basic-event name="identifier" />

 | <not> <basic-event name="identifier" /> </not>

Figure IX-1. Backus-Naur form for the XML representation of sums-of-products

Open-PSA Open-PSA Model Exchange Format - 72

Draft n°2.0d – 12/05/2008

IX.3.2. Statistical measures
Statistical measures are typically produced by sensitivity analyses. They are the result, in
general, of Monte-Carlo simulations on the values of some parameter. Such a measure can
come with moments (mean, standard deviation), confidence ranges, error factors, quantiles...
The XML representation for statistical measure is given Figure IX-2.

measure ::=

 <measure

 [name="identifier"]

 [description="text"]

 >

 [<mean value="float" >]

 [<standard-deviation value="float" >]

 [<confidence-range

 percentage="float"

 lower-bound="float"

 upper-bound="float" >]

 [<error-factor percentage="float" value="float" >]

 [quantiles]

 </measure>

quantiles ::=

 <quantiles number="integer" >

 quantile+

 </quantiles>

quantile ::=

 <quantile number="integer"

 [mean="float"]

 [lower-bound="float"]

 [upper-bound="float"]

 />

Figure IX-2. Backus-Naur form for the XML representation of statistical measures

IX.3.3. Curves
Two or three dimensional curves are often produced in PSA studies. A typical example is
indeed to study the evolution of the system unavailability through the time. The XML
representation of curves suggested by the Model Exchange Format is given Figure IX-3.

curve ::=

 <curve

 [name="identifier"]

Open-PSA Open-PSA Model Exchange Format - 73

Draft n°2.0d – 12/05/2008

 [description="text"]

 [X-title="string" Y-title="string" [Z-title="string"]]

 [X-unit="unit" Y-unit="unit" [Z-unit="unit"]]

 >

 <point X="float" Y="float" [Z="float"] />*

 </curve>

unit ::= seconds | hours | ...

Figure IX-3. Backus-Naur for the XML representation of curves

Open-PSA Open-PSA Model Exchange Format - 74

Draft n°2.0d – 12/05/2008

X. REFERENCES
Basic PSA references
1. ASME RA-S-2002, "Standard for Probabilistic Risk Assessment for Nuclear Power Plant

Applications", The American Society of Mechanical Engineers, 2002.
2. Roberts N. H., W. E. Vesely, D. F. Haasl, F. F. Goldberg, Fault Tree Handbook, NUREG-

0492, US NRC, Washington, 1981.
3. W. Vesely, J. Dugan, J. Fragola, J. Minarick, J. Railsback, Fault Tree Handbook with

Aerospace Applications, National Aeronautics and Space Administration, NASA, 2002
4. Regulatory Guide 1200, An Approach for Determining the Technical Adequacy of

Probabilistic Risk Assessment Results for Risk-Informed Activities, US NRC, 2004.
5. US NRC Regulatory Guide 1.174 "An Approach for Using Probabilistic Risk Assessment

in Risk-Informed Decisions on Plant-Specific Changes to the Licensing Basis", Revision
1, US NRC, 2002.

Difficulties with PSA
6. Čepin M., Analysis of Truncation Limit in Probabilistic Safety Assessment, Reliability

Engineering and System Safety, 2005, Vol. 87 (3), pp. 395-403.
7. S. Epstein and A. Rauzy, Can we trust PRA?, Reliability Engineering & System Safety,

Volume 88, Issue 3, June 2005, Pages 195-205
Novel approaches
8. Antoine Rauzy, New algorithms for fault trees analysis, Reliability Engineering & System

Safety, Volume 40, Issue 3, 1993, Pages 203-211
9. Antoine Rauzy and Yves Dutuit, Exact and truncated computations of prime implicants of

coherent and non-coherent fault trees within Aralia, Reliability Engineering & System
Safety, Volume 58, Issue 2, November 1997, Pages 127-144

10. Poul Frederick Williams, Macha Nikolskaïa and Antoine Rauzy, Bypassing BDD
construction for reliability analysis, Information Processing Letters, Volume 75, Issues 1-
2, 31 July 2000, Pages 85-89

11. Y. Dutuit and A. Rauzy, Approximate estimation of system reliability via fault trees,
Reliability Engineering & System Safety, Volume 87, Issue 2, February 2005, Pages 163-
172

12. Čepin M., B. Mavko, A Dynamic Fault Tree, Reliability Engineering and System Safety,
2002, Vol. 75, No. 1, pp. 83-91.

13. Albert F. Myers and Antoine Rauzy, Assessment of redundant systems with imperfect
coverage by means of binary decision diagrams, Reliability Engineering & System Safety,
Volume 93, Issue 7, July 2008, Pages 1025-1035

Open-PSA Open-PSA Model Exchange Format - 75

Draft n°2.0d – 12/05/2008

Appendix A. EXTENDED BACKUS-NAUR FORM
The following presentation is inspired from the article about the Backus-Naur form in

Wikipedia.

The Backus–Naur form (also known as BNF, the Backus–Naur formalism or Backus normal
form) is a meta-syntax used to express context-free grammars: that is, a formal way to
describe formal languages. BNF is widely used as a notation for the grammars of computer
programming languages. Most textbooks for programming language theory and/or semantics
document the programming language in BNF.
A BNF specification is a set of derivation rules, written as

symbol ::= <expression with symbols>

where symbol is a nonterminal, and the expression consists of sequences of symbols and/or
sequences separated by the vertical bar, '|', indicating a choice, the whole being a possible
substitution for the symbol on the left. Symbols that never appear on a left side are terminals.
As an example, consider this possible BNF for a U.S. postal address:

postal-address ::= name-part street-address zip-part

name-part ::=

 personal-part last-name [jr-part] EOL

 | personal-part name-part EOL

personal-part ::= first-name | initial .

jr-part ::= Jr | Sr | dynastic-number

street-address ::= [apartement-number] house-number street-name EOL

zip-part ::= town-name , state-code ZIP-code EOL

This translates into English as:

• A postal address consists of a name-part, followed by a street-address part, followed
by a zip-code part.

• A name-part consists of either: a personal-part followed by a last name followed by an
optional "jr-part" (Jr., Sr., or dynastic number) and end-of-line, or a personal part
followed by a name part (this rule illustrates the use of recursion in BNFs, covering
the case of people who use multiple first and middle names and/or initials).

• A personal-part consists of either a first name or an initial followed by a dot.
• A street address consists of an optional apartment specifier, followed by a house

number, followed by a street name, followed by an end-of-line.
• A zip-part consists of a town-name, followed by a comma, followed by a state code,

followed by a ZIP-code followed by an end-of-line.

Open-PSA Open-PSA Model Exchange Format - 76

Draft n°2.0d – 12/05/2008

Note that many things (such as the format of a first-name, apartment specifier, or ZIP-code)
are left unspecified here. If necessary, they may be described using additional BNF rules.

There are many variants and extensions of BNF, generally either for the sake of simplicity and
succinctness, or to adapt it to a specific application. One common feature of many variants is
the use of regular expressions repetition operators such as * and +. The Extended Backus-
Naur form we shall use is as follows.

• Non terminal symbols are italicized, terminal symbols are written in regular font.
• Optional items enclosed in square brackets. E.g. [item-x].
• Items repeating 1 or more times are followed by a '+'.
• Items repeating 0 or more times are followed by a '*'.
• Items repeating k times are enclosed in square brackets followed by ‘:k’. E.g. [item-x

]:3.
• Items repeating n or more times are followed by 'n'.
• Where items need to be grouped they are enclosed in simple parenthesis.
• Comments start with a ‘#’ and spread until the end of the line

Open-PSA Open-PSA Model Exchange Format - 77

Draft n°2.0d – 12/05/2008

Appendix B. DTD OF THE OPEN-PSA MODEL

EXCHANGE FORMAT
<!-- ---

-->

<!-- I. Report/Calculation Layer

-->

<!-- ---

-->

<!-- ---

-->

<!-- I.1. Models

-->

<!-- ---

-->

<!ELEMENT opsa-mef

 (label?, attributes?,

 (

 define-event-tree

 | define-alignment

 | define-consequence-group | define-consequence

 | define-rule

 | define-initiating-event-group | define-initiating-event

 | define-fault-tree

 | define-substitution

 | define-CCF-group

 | include

)*

)

 >

<!ELEMENT label (#PCDATA)>

<!ELEMENT attributes attribute* >

<!ELEMENT attribute EMPTY>

<!ATTLIST attribute

 name CDATA #REQUIRED value CDATA #REQUIRED type CDATA #IMPLIED >

<!ELEMENT include EMPTY>

<!ATTLIST include file CDATA #REQUIRED >

<!-- ---

-->

<!-- I.2. Consequences, Consequence Groups

-->

<!-- ---

-->

<!ELEMENT define-consequence (label?, attributes?, initiating-event,

sequence) >

Open-PSA Open-PSA Model Exchange Format - 78

Draft n°2.0d – 12/05/2008

<!ATTLIST define-consequence name CDATA #REQUIRED >

<!ELEMENT define-consequence-group

 (label?, attributes?, (consequence | consequence-group)*)

 >

<!ATTLIST define-consequence-group name CDATA #REQUIRED >

<!ELEMENT consequence EMPTY>

<!ATTLIST consequence name CDATA #REQUIRED >

<!ELEMENT consequence-group EMPTY>

<!ATTLIST consequence-group name CDATA #REQUIRED >

<!-- ---

-->

<!-- I.3. Missions, Phases

-->

<!-- ---

-->

<!ELEMENT define-alignment (label?, attributes?, instruction*) >

<!ATTLIST define-alignment name CDATA #REQUIRED >

<!-- ---

-->

<!-- II. Event Tree Layer

-->

<!-- ---

-->

<!-- ---

-->

<!-- II.1. Initiating events, Initiating event Groups

-->

<!-- ---

-->

<!ENTITY % collected-item '(basic-event | gate | parameter)' >

<!ELEMENT define-initiating-event

 (label?, attributes?,

 (collected-item | consequence | consequence-group)*)

 >

<!ATTLIST define-initiating-event name CDATA #REQUIRED >

<!ELEMENT define-initiating-event-group

 (label?, attributes?, (initiating-event | initiating-event-group)*)

 >

<!ATTLIST define-initiating-event-group name CDATA #REQUIRED >

<!ELEMENT initiating-event EMPTY>

<!ATTLIST initiating-event name CDATA #REQUIRED event-tree CDATA #IMPLIED >

<!ELEMENT initiating-event-group EMPTY>

<!ATTLIST initiating-event-group

 name CDATA #REQUIRED event-tree CDATA #IMPLIED >

Open-PSA Open-PSA Model Exchange Format - 79

Draft n°2.0d – 12/05/2008

<!-- ---

-->

<!-- II.2. Event Trees

-->

<!-- ---

-->

<!ENTITY % end-state '(sequence | branch)'>

<!ENTITY % branch '(instruction* (fork | end-state))'>

<!ELEMENT define-event-tree

 (label?, attributes?,

 define-functional-event*,

 define-sequence*,

 define-branch*

 initial-state)

 >

<!ATTLIST define-event-tree name CDATA #REQUIRED >

<!ELEMENT define-functional-event (label?, attributes?) >

<!ATTLIST define-functional-event name CDATA #REQUIRED >

<!ELEMENT define-sequence (label?, attributes?, instruction*) >

<!ATTLIST define-sequence name CDATA #REQUIRED >

<!ELEMENT define-branch (label?, attributes?, branch) >

<!ATTLIST define-branch name CDATA #REQUIRED >

<!ELEMENT fork (path)+>

<!ATTLIST fork functional-event CDATA #REQUIRED >

<!ELEMENT path (branch)+ >

<!ATTLIST path state CDATA #REQUIRED >

<!ELEMENT initial-state branch>

<!-- ---

-->

<!-- II.3. Instructions, Rules

-->

<!-- ---

-->

<!ENTITY % set

 '(set-gate | set-house-event | set-basic-event | set-parameter)' >

<!ENTITY % collect '(collect-formula | collect-expression)' >

<!ENTITY % instruction '(set | collect | if | block | rule | event-tree)'>

<!ENTITY % directions '(forward | backward | both)'>

<!ELEMENT set-gate formula >

<!ATTLIST set-gate name CDATA #REQUIRED direction directions #IMPLIED >

<!ELEMENT set-house-event Constant >

<!ATTLIST set-house-event name CDATA #REQUIRED direction directions

#IMPLIED >

<!ELEMENT set-basic-event expression >

<!ATTLIST set-basic-event name CDATA #REQUIRED direction directions

#IMPLIED >

Open-PSA Open-PSA Model Exchange Format - 80

Draft n°2.0d – 12/05/2008

<!ELEMENT set-parameter expression >

<!ATTLIST set-parameter name CDATA #REQUIRED direction directions #IMPLIED

>

<!ELEMENT if (expression, instruction, instruction?) >

<!ELEMENT collect-formula formula>

<!ELEMENT collect-expression expression>

<!ELEMENT block instruction* >

<!ELEMENT event-tree EMPTY >

<!ATTLIST set-parameter name CDATA #REQUIRED >

<!ELEMENT rule EMPTY >

<!ATTLIST rule name CDATA #REQUIRED >

<!-- ---

-->

<!-- III. Meta-Logical Layer

-->

<!-- ---

-->

<!-- ---

-->

<!-- III.1. CCF-Groups

-->

<!-- ---

-->

<!ELEMENT define-CCF-group

 (label?, attributes?, members, distribution, factors) >

<!ATTLIST define-CCF-group

 name CDATA #REQUIRED

 model (beta-factor | MGL | alpha-factor | phi-factor) #REQUIRED >

<!ELEMENT members basic-event+ >

<!ELEMENT factors factor+ >

<!ELEMENT factor expression >

<!ATTLIST factor level CDATA #REQUIRED >

<!-- ---

-->

<!-- III.2. Substitutions

-->

<!-- ---

-->

<!ELEMENT distribution expression >

<!ELEMENT define-substitution

 (label?, attributes?, hypothesis, source?, target) >

<!ATTLIST define-substitution name CDATA #IMPLIED type CDATA #IMPLIED >

Open-PSA Open-PSA Model Exchange Format - 81

Draft n°2.0d – 12/05/2008

<!ELEMENT hypothesis Boolean-formula >

<!ELEMENT source basic-event+ >

<!ELEMENT target (basic-event+ | Boolean-formula) >

<!-- ---

-->

<!-- IV. Fault Tree Layer

-->

<!-- ---

-->

<!-- ---

-->

<!-- IV.1. Definitions of Fault Trees & Components

-->

<!-- ---

-->

<!ELEMENT define-fault-tree

 (label?, attributes?,

 (

 define-substitution | define-CCF-group

 | define-component

 | define-gate | define-house-event

 | define-basic-event | define-parameter

 | include

)*

 >

<!ATTLIST define-fault-tree name CDATA #IMPLIED >

<!ELEMENT define-component

 (label?, attributes?,

 (

 define-substitution | define-CCF-group

 | define-component

 | define-gate | define-house-event

 | define-basic-event | define-parameter

 | include

)*

 >

<!ATTLIST define-component

 name CDATA #REQUIRED

 role (private | public) #IMPLIED

 >

<!ELEMENT model-data

 (define-house-event | define-basic-event | define-parameter | include)*

 >

<!-- ---

-->

<!-- IV.2. Definitions of Gates, House Events & Basic Events

-->

<!-- ---

-->

<!ELEMENT define-gate (label?, attributes?, formula) >

Open-PSA Open-PSA Model Exchange Format - 82

Draft n°2.0d – 12/05/2008

<!ATTLIST define-component

 name CDATA #REQUIRED

 role (private | public) #IMPLIED

 >

<!ELEMENT define-house-event (label?, attributes?, Constant?) >

<!ATTLIST define-house-event

 name CDATA #REQUIRED

 role (private | public) #IMPLIED

 >

<!ELEMENT define-basic-event (label?, attributes?, expression?) >

<!ATTLIST define-basic-event

 name CDATA #REQUIRED

 role (private | public) #IMPLIED

 >

<!-- ---

-->

<!-- IV.3. Formulae

-->

<!-- ---

-->

<!ELEMENT formula (

 gate | house-event | basic-event | Constant

 | and | or | not | xor | iff | nand | nor | atleast | cardinality) >

<!ELEMENT gate EMPTY>

<!ATTLIST gate name CDATA #REQUIRED>

<!ELEMENT house-event EMPTY>

<!ATTLIST house-event name CDATA #REQUIRED>

<!ELEMENT basic-event EMPTY>

<!ATTLIST basic-event name CDATA #REQUIRED>

<!ELEMENT and formula+ >

<!ELEMENT or formula+ >

<!ELEMENT not formula >

<!ELEMENT xor formula+ >

<!ELEMENT iff formula+ >

<!ELEMENT nand formula+ >

<!ELEMENT nor formula+ >

<!ELEMENT atleast formula+ >

<!ATTLIST atleast min CDATA #REQUIRED>

<!ELEMENT cardinality formula+ >

<!ATTLIST cardinality min CDATA #REQUIRED max CDATA #REQUIRED>

<!ELEMENT imply formula formula >

<!ELEMENT constant EMPTY >

<!ATTLIST constant value (true | false) #REQUIRED>

<!-- ---

-->

<!-- V. Stochastic Layer

-->

Open-PSA Open-PSA Model Exchange Format - 83

Draft n°2.0d – 12/05/2008

<!-- ---

-->

<!-- ---

-->

<!-- V.1. Definition of Parameters

-->

<!-- ---

-->

<!ENTITY % units

 '(bool | int | float | hours | hours-1 | years | years-1

 | fit | demands) ' >

<!ELEMENT define-parameter (label?, attributes?, expression?) >

<!ATTLIST define-parameter

 name CDATA #REQUIRED

 role (private | public) #IMPLIED

 unit units #IMPLIED >

<!-- ---

-->

<!-- V.2. Expressions

-->

<!-- ---

-->

<!-- ---

-->

<!-- V.2.1. Entities

-->

<!-- ---

-->

<!ENTITY % value

 '(bool | int | float)' >

<!ENTITY % numerical-operation

 '(neg | add | sub | mul | div | pi | abs | acos | asin | atan | cos

 | cosh | exp | log | log10 | mod | pow | sin | sinh | tan | tanh

 | sqrt | ceil | floor | min | max | mean)' >

<!ENTITY % Boolean-operation

 '(not | and | or | eq | df | lt | gt | leq | geq)' >

<!ENTITY % conditional-operation '(ite | switch)' >

<!ENTITY % operation

 '(numerical-operation | Boolean-operation | conditional-operation)' >

<!ENTITY % built-in

 '(exponential | GLM | Weibull | periodic-test | extern-function)' >

<!ENTITY % random-deviate

 '(uniform-deviate | normal-deviate | lognormal-deviate | gamma-deviate

 | beta-deviate | histogram)' >

<!ENTITY % test-event '(test-initiating-event | test-functional-event)' >

Open-PSA Open-PSA Model Exchange Format - 84

Draft n°2.0d – 12/05/2008

<!ENTITY % expression

 '(value | parameter | system-mission-time | operation| built-in

 | random-deviate | test-event)' >

<!-- ---

-->

<!-- V.2.2. Constants, Parameters

-->

<!-- ---

-->

<!ELEMENT bool EMPTY >

<!ATTLIST value (true | false) #REQUIRED>

<!ELEMENT int EMPTY >

<!ATTLIST value CDATA #REQUIRED>

<!ELEMENT float EMPTY >

<!ATTLIST value CDATA #REQUIRED>

<!ELEMENT system-mission-time EMPTY >

<!ATTLIST unit units #IMPLIED >

<!ELEMENT parameter EMPTY >

<!ATTLIST name CDATA #REQUIRED >

<!-- ---

-->

<!-- V.2.3. Numerical Expressions

-->

<!-- ---

-->

<!ELEMENT neg expression >

<!ELEMENT add expression+ >

<!ELEMENT sub expression+ >

<!ELEMENT mul expression+ >

<!ELEMENT div expression+ >

<!ELEMENT pi EMPTY >

<!ELEMENT abs expression >

<!ELEMENT acos expression >

<!ELEMENT asin expression >

<!ELEMENT atan expression >

<!ELEMENT cos expression >

<!ELEMENT cosh expression >

<!ELEMENT exp expression >

<!ELEMENT log expression >

<!ELEMENT log10 expression >

<!ELEMENT mod (expression, expression) >

<!ELEMENT pow (expression, expression) >

<!ELEMENT sin expression >

<!ELEMENT sinh expression >

<!ELEMENT tan expression >

<!ELEMENT tanh expression >

<!ELEMENT sqrt expression >

<!ELEMENT ceil expression >

<!ELEMENT floor expression >

<!ELEMENT min expression+ >

Open-PSA Open-PSA Model Exchange Format - 85

Draft n°2.0d – 12/05/2008

<!ELEMENT max expression+>

<!ELEMENT mean expression+ >

<!-- ---

-->

<!-- V.2.4. Boolean Expressions

-->

<!-- ---

-->

<!ELEMENT not expression >

<!ELEMENT and expression+ >

<!ELEMENT or expression+ >

<!ELEMENT eq (expression, expression) >

<!ELEMENT df (expression, expression) >

<!ELEMENT lt (expression, expression) >

<!ELEMENT gt (expression, expression) >

<!ELEMENT leq (expression, expression) >

<!ELEMENT geq (expression, expression) >

<!-- ---

-->

<!-- V.2.5. Conditional Expressions

-->

<!-- ---

-->

<!ELEMENT ite (expression, expression, expression) >

<!ELEMENT switch (case*, expression) >

<!ELEMENT case (expression, expression)>

<!-- ---

-->

<!-- V.2.6. Built-ins

-->

<!-- ---

-->

<!ELEMENT exponential (expression, expression) >

<!ELEMENT GLM (expression, expression, expression, expression) >

<!ELEMENT Weibull (expression, expression, expression) >

<!ELEMENT periodic-test expression+ >

<!ELEMENT extern-function expression* >

<!ATTLIST extern-function name CDATA #REQUIRED>

<!-- ---

-->

<!-- V.2.7. Random-Deviates

-->

<!-- ---

-->

<!ELEMENT uniform-deviate (expression, expression) >

Open-PSA Open-PSA Model Exchange Format - 86

Draft n°2.0d – 12/05/2008

<!ELEMENT normal-deviate (expression, expression) >

<!ELEMENT lognormal-deviate (expression, expression, expression) >

<!ELEMENT gamma-deviate (expression, expression) >

<!ELEMENT beta-deviate (expression, expression)>

<!ELEMENT histogram (expression, bin+) >

<!ELEMENT bin (expression, expression) >

<!-- ---

-->

<!-- V.2.8. Test-Events

-->

<!-- ---

-->

<!ELEMENT test-initiating-event >

<!ATTLIST test-initiating-event name CDATA #REQUIRED >

<!ELEMENT test-functional-event >

<!ATTLIST test-functional-event name CDATA #REQUIRED state CDATA #REQUIRED

>

Open-PSA Open-PSA Model Exchange Format - 87

Draft n°2.0d – 12/05/2008

Appendix C. BACKUS-NAUR FORM FOR THE

OPEN-PSA MODEL EXCHANGE FORMAT

C.1. Models
model ::=

 <?xml version="1.0" ?>

 <!DOCTYPE opsa-mef >

 <opsa-mef [name="identifier"] >

 [label] [attributes]

 (

 event-tree-definition

 | alignment-definition

 | consequence-group-definition | consequence-definition

 | rule-definition

 | initiating-event-group-definition | initiating-event-definition

 | fault-tree-definition

 | substitution-definition

 | CCF-group-definition

 | include-directive

)*

 </opsa-mef>

label :=

 <label> any text </label>

attributes ::=

 <attributes> attribute+ </attributes>

attribute ::=

 <attribute name="identifier" value="string" [type="string"] / >

include-directive ::=

 <include file="string" />

Open-PSA Open-PSA Model Exchange Format - 88

Draft n°2.0d – 12/05/2008

C.2. Consequence, Consequence Groups, Alignments
consequence-definition ::=

 <define-consequence name="identifier" >

 [label] [attributes]

 <initiating-event name="identifier" />

 <sequence name="identifier" />

 </define-consequence>

consequence-group-definition ::=

 <define-consequence-group name="identifier" >

 [label] [attributes]

 consequence | consequence-group

 </define-consequence-group>

consequence ::=

 <consequence name="identifier" />

consequence-group ::=

 <consequence-group name="identifier" />

alignment-definition ::=

 <define-alignment name="identifier" time-fraction="float" >

 [label] [attributes]

 instruction*

 </define-alignment>

C.3. Initiating events, Initiating event Groups
initiating-event-definition ::=

 <define-initiating-event name="identifier" [event-tree="identifier"] >

 [label] [attributes]

 [collected-item | consequence | consequence-group]

 </define-initiating-event>

initiating-event-group-definition::=

 <define-initiating-event-group name="identifier" [event-

tree="identifier"] >

 [label] [attributes]

 initiating-event+

 </define-initiating-event-group>

initiating-event ::=

 <initiating-event name="identifier" />

 | <initiating-event-group name="identifier" />

collected-item ::=

 <basic-event name="identifier" />

 | <gate name="identifier" />

 | <parameter name="identifier" />

Open-PSA Open-PSA Model Exchange Format - 89

Draft n°2.0d – 12/05/2008

C.4. Event Trees
event-tree-definition ::=

 <define-event-tree name="identifier">

 [label] [attributes]

 functional-event-definition*

 sequence-definition*

 branch-definition*

 initial-state

 </define-event-tree>

functional-event-definition ::=

 <define-functional-event name="identifier" >

 [label]

 [attributes]

 </define-functional-event>

sequence-definition ::=

 <define-sequence name="identifier" >

 [label]

 [attributes]

 instruction+

 </define-sequence>

branch-definition ::=

 <define-branch name="identifier" >

 [label]

 [attributes]

 branch

 </define-branch>

branch ::= instruction* (fork | end-state)

fork ::= <fork functional-event="identifier"> path+ </fork>

path ::= <path state="identifier" > branch </path>

end-state ::=

 <sequence name="identifier" />

 | <branch name="identifier" />

initial-state ::=

 <initial-state> branch </initial-state>

Open-PSA Open-PSA Model Exchange Format - 90

Draft n°2.0d – 12/05/2008

C.5. Instructions, Rules

instruction ::= set | collect | if-then-else | block | rule | link

set ::= set-gate | set-house-event | set-basic-event | set-parameter

set-gate ::=

 <set-gate name="identifier" [direction="direction"] >

 formula

 </set-gate>

set-house-event ::=

 <set-house-event name="identifier" [direction="direction"] >

 Boolean-constant

 </set-house-event>

set-basic-event ::=

 <set-basic-event name="identifier" [direction="direction"] >

 expression

 </set-basic-event>

set-parameter ::=

 <set-parameter name="identifier" [direction="direction"] >

 expression

 </set-parameter>

direction ::= forward | backward | both

if-then-else ::=

 <if> expression instruction [instruction] </if>

collect ::= collect-formula | collect-expression

collect-formula ::= <collect-formula> formula </collect-formula>

collect-expression ::= <collect-expression> expression </collect-

expression>

block ::= <block> instruction* </block>

rule ::= <rule name="identifier" />

link ::= <event-tree name="name" />

rule-definition ::=

 <define-rule name="identifier" >

 [label] [attributes]

 instruction+

 </define-rule>

Open-PSA Open-PSA Model Exchange Format - 91

Draft n°2.0d – 12/05/2008

C.6. CCF-groups, Substitutions
CCF-group-definition ::=

 <define-CCF-group name="identifier" model="CCF-model" >

 [label]

 [attributes]

 members

 distribution

 factors

 </define-CCF-group>

members ::=

 <members>

 <basic-event name="identifier" />+

 </members>

factors ::=

 <factors> factor+ </factors>

 | factor

factor ::=

 <factor [level="integer"] >

 expression

 </factor>

distribution ::=

 <distribution >

 expression

 </distribution>

CCF-model ::= beta-factor | MGL | alpha-factor | phi-factor

substitution-definition ::=

 <define-substitution [name="identifier"] [type="identifier" >

 [label]

 [attributes]

 <hypothesis> Boolean-formula </hypothesis>

 [<source> basic-event+ </source>]

 <target> basic-event+ | Boolean-constant </target>

 </define-substitution >

Open-PSA Open-PSA Model Exchange Format - 92

Draft n°2.0d – 12/05/2008

C.7. Fault Trees, Components
fault-tree-definition ::=

 <define-fault-tree name="identifier">

 [label]

 [attributes]

 (

 substitution-definition | CCF-group-definition

 | component-definition

 | gate-definition | house-event-definition

 | basic-event-definition | parameter-definition

 | include-directive

)*

 </define-fault-tree>

component-definition ::=

 <define-component name="identifier">

 [label]

 [attributes]

 (

 substitution-definition | CCF-group-definition

 | component-definition

 | gate-definition | house-event-definition

 | basic-event-definition | parameter-definition

 | include-directive

)*

 </define-component>

model-data ::=

 <model-data>

 (house-event-definition | basic-event-definition | parameter-definition

)*

 </model-data>

event-definition ::=

 gate-definition

 | house-event-definition

 | basic-event-definition

gate-definition ::=

 <define-gate name="identifier" [role="private|public"] >

 [label]

 [attributes]

 formula

 </define-gate>

house-event-definition ::=

 <define-house-event name="identifier" [role="private|public"] >

 [label]

 [attributes]

 [Boolean-constant]

 </define-house-event>

Open-PSA Open-PSA Model Exchange Format - 93

Draft n°2.0d – 12/05/2008

C.8. Formulae
formula ::=

 event

 | Boolean-constant

 | <and> formula+ </and>

 | <or> formula+ </or>

 | <not> formula </not>

 | <xor> formula+ </xor>

 | <iff> formula+ </iff>

 | <nand> formula+ </nand>

 | <nor> formula+ </nor>

 | <atleast min="integer" > formula+ </atleast>

 | <cardinality min="integer" max="integer" > formula+ </cardinality>

 | <imply> formula formula </imply>

event ::=

 <event name="identifier" [type="event-type"] />

 | <gate name="identifier" />

 | <house-event name="identifier" />

 | <basic-event name="identifier" />

event-type ::= gate | basic-event | house-event

Boolean-constant ::= <constant value="Boolean-value" />

Boolean-value ::= true | false

C.9. Basic Events, Parameters
basic-event-definition ::=

 <define-basic-event name="identifier" [role="private|public"] >

 [label]

 [attributes]

 [expression]

 </declare>

parameter-definition ::=

 <define-parameter name="identifier"

 [role="private|public"] [unit="unit"]>

 [label]

 [attributes]

 expression

 </define-parameter>

unit ::= bool | int | float | hours | hours-1 | years | years-1

 | demands | fit

Open-PSA Open-PSA Model Exchange Format - 94

Draft n°2.0d – 12/05/2008

C.10. Expressions
expression ::=

 constant | parameter | operation | built-in | random-deviate | test-event

constant ::=

 <bool value="Boolean-value" />

 | <int value="integer" />

 | <float value="float" />

parameter ::=

 <parameter name="identifier" [type="value-type"] />

 | <system-mission-time [unit="unit"] />

operation ::=

 numerical-operation | Boolean-operation | conditional-operation

numerical-operation ::=

 <neg> expression </neg>

 | <add> expression+ </add>

 | _{expression+}

 | <mul> expression+ </mul>

 | <div> expression+ </div>

 | <pi />

 | <abs> expression </abs>

 | <acos> expression </acos>

 | <asin> expression </asin>

 | <atan> expression </atan>

 | <cos> expression </cos>

 | <cosh> expression </cosh>

 | <exp> expression </exp>

 | <log> expression </log>

 | <log10> expression </log10>

 | <mod> expression expression </mod>

 | <pow> expression expression </pow>

 | <sin> expression </sin>

 | <sinh> expression </sinh>

 | <tan> expression </tan>

 | <tanh> expression </tanh>

 | <sqrt> expression </sqrt>

 | <ceil> expression </ceil>

 | <floor> expression </floor>

 | <min> expression+ </min>

 | <max> expression+ </max>

 | <mean> expression+ </mean>

Boolean-operation ::=

 <not> expression </not>

 | <and> expression+ </and>

Open-PSA Open-PSA Model Exchange Format - 95

Draft n°2.0d – 12/05/2008

 | <or> expression+ </or>

 | <eq> expression expression </eq>

 | <df> expression expression </df>

 | <lt> expression expression </lt>

 | <gt> expression expression </gt>

 | <leq> expression expression </leq>

 | <geq> expression expression </geq>

conditional-operation ::=

 if-then-else-operation | switch-operation

if-then-else-operation ::=

 <ite> expression expression expression </ite>

switch-operation ::=

 <switch>

 case-operation*

 expression

 </switch>

case-operation ::=

 <case> expression expression </case>

built-in ::=

 <exponential> [expression]:2 </exponential>

 | <GLM> [expression]:4 </GLM>

 | <Weibull> [expression]:3 </Weibull>

 | <periodic-test> [expression]:11 </periodic-test>

 | <periodic-test> [expression]:5 </periodic-test>

 | <periodic-test> [expression]:4 </periodic-test>

 | <extern-function name="name" > expression* </extern-function>

random-deviate ::=

 <uniform-deviate> [expression]:2 </uniform-deviate>

 | <normal-deviate> [expression]:2 </normal-deviate>

 | <lognormal-deviate> [expression]:3 </lognormal-deviate>

 | <gamma-deviate> [expression]:2 </gamma-deviate>

 | <beta-deviate> [expression]:2 </beta-deviate>

 | histogram

histogram ::=

 <histogram > expression bin+ </histogram>

bin ::=

 <bin> expression expression </bin>

test-event ::=

 <test-initiating-event name="name" />

 | <test-functional-event name="name" state="identifier" />

